• Title/Summary/Keyword: Natural language processing (NLP)

Search Result 168, Processing Time 0.022 seconds

Trends in Deep Learning-based Medical Optical Character Recognition (딥러닝 기반의 의료 OCR 기술 동향)

  • Sungyeon Yoon;Arin Choi;Chaewon Kim;Sumin Oh;Seoyoung Sohn;Jiyeon Kim;Hyunhee Lee;Myeongeun Han;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.453-458
    • /
    • 2024
  • Optical Character Recognition is the technology that recognizes text in images and converts them into digital format. Deep learning-based OCR is being used in many industries with large quantities of recorded data due to its high recognition performance. To improve medical services, deep learning-based OCR was actively introduced by the medical industry. In this paper, we discussed trends in OCR engines and medical OCR and provided a roadmap for development of medical OCR. By using natural language processing on detected text data, current medical OCR has improved its recognition performance. However, there are limits to the recognition performance, especially for non-standard handwriting and modified text. To develop advanced medical OCR, databaseization of medical data, image pre-processing, and natural language processing are necessary.

국가연구개발사업 평가에서 사회연결망 분석 활용 방안

  • Gi, Ji-Hun
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.11a
    • /
    • pp.129-129
    • /
    • 2017
  • In planning and evaluating government R&D programs, one of the first steps is to understand the government's current R&D investment portfolio - which fields or topics the government is now investing in in R&D. Analysis methods of an investment portfolio of government R&D tend traditionally to rely on keyword searches or ad-hoc two-dimensional classifications. The main drawback of these approaches is their limited ability to account for the characteristics of the whole government investment in R&D and the role of individual R&D program in it, which tends to depend on the relationship with other programs. This paper suggests a new method for mapping and analyzing government investment in R&D using a combination of methods from natural language processing (NLP) and network analysis. The NLP enables us to build a network of government R&D programs whose links are defined as similarity in R&D topics. Then methods from network analysis show the characteristics of government investment in R&D, including major investment fields, unexplored topics, and key R&D programs which play a role like a hub or a bridge in the network of R&D programs, which are difficult to be identified by conventional methods. These insights can be utilized in planning a new R&D program, in reviewing its proposal, or in evaluating the performance of R&D programs. The utilized (filtered) Korean text corpus consists of hundreds of R&D program descriptions in the budget requests for fiscal year 2017 submitted by government departments to the Korean Ministry of Strategy and Finance.

  • PDF

Advanced CBS (Cost Breakdown Structure) Code Search Technology Applying NLP (Natural Language Processing) of Artificial Intelligence (인공지능 자연어 처리 기법을 이용한 개선된 내역코드 탐색방법)

  • Kim, HanDo;Nam, JeongYong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.719-731
    • /
    • 2024
  • For efficient construction management, linking BIM with schedule and cost is essential, but there are limits to the application of 5D BIM due to the difficulty in disassembling thousands of WBS and CBS. To solve this problem, a standardized WBS-CBS set is configured in advance, and when a new construction project occurs, the CBS in the BOQ is automatically linked to the WBS when a text most similar to it is found among the standard CBS (Public Procurement Service standard construction code) of the already linked set. A method was used to compare the text similarity of CBS more efficiently using artificial intelligence natural language processing techniques. Firstly, we created a civil term dictionary (CTD) that organized the words used in civil projects and assigned numerical values, tokenized the text of all CBS into words defined in the dictionary, converted them into TF-IDF vectors, and determined them by cosine similarity. Additionally, the search success rate increased to nearly 70 % by considering CBS' hierarchical structure and changing keywords. The threshold value for judging similarity was 0.62 (1: perfect match, 0: no match).

Korean Natural Language Processing Platform for Linked Data (Linked Data를 위한 한국어 자연언어처리 플랫폼)

  • Hahm, YoungGyun;Lim, Kyungtae;Rezk, Martin;Park, Jungyeul;Yoon, Yongun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.16-20
    • /
    • 2012
  • 본 논문에서는 한국어 자연언어처리를 위해 형태소분석기와 구구조 구문분석기와 의존구조 구문분석기를 통합한 하나의 플랫폼을 제공하고, 외국의 다양한 자연언어처리 도구들의 결과물과의 국제적 상호운용성 및 Linked Data를 위한 RDF 형태로의 변환 시스템을 제시한다.

  • PDF

Acquisition of Named-Entity-Related Relations for Searching

  • Nguyen, Tri-Thanh;Shimazu, Akira
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.349-357
    • /
    • 2007
  • Named entities (NEs) are important in many Natural Language Processing (NLP) applications, and discovering NE-related relations in texts may be beneficial for these applications. This paper proposes a method to extract the ISA relation between a "named entity" and its category, and an IS-RELATED-TO relation between the category and its related object. Based on the pattern extraction algorithm "Person Category Extraction" (PCE), we extend it for solving our problem. Our experiments on Wall Street Journal (WSJ) corpus show promising results. We also demonstrate a possible application of these relations by utilizing them for semantic search.

  • PDF

A Comparative Analysis of Research Trends in the Information and Communication Technology Field of South and North Korea Using Data Mining

  • Jiwan Kim;Hyunkyoo Choi;Jeonghoon Mo
    • Journal of Information Science Theory and Practice
    • /
    • v.11 no.1
    • /
    • pp.14-30
    • /
    • 2023
  • The purpose of this study is to compare research trends in the information and communication technology (ICT) field between North and South Korea and analyze the differences by using data mining. Frequency analysis, clustering, and network analysis were performed using keywords from seven South Korean and two North Korean ICT academic journals published for five years (2015-2019). In the case of South Korea (S. Korea), the frequency of research on image processing and wireless communication was high at 16.7% and 16.3%, respectively. North Korea (N. Korea) had a high frequency of research, in the order of 18.2% for image processing, 16.9% for computer/Internet applications/security, and 16.4% for industrial technology. N. Korea's natural language processing (NLP) sector was 11.9%, far higher than S. Korea's 0.7 percent. Student education is a unique subject that is not clustered in S. Korea. In order to promote exchanges between the two Koreas in the ICT field, the following specific policies are proposed. Joint research will be easily possible in the image processing sector, with the highest research rate in both Koreas. Technical cooperation of medical images is required. If S. Korea's high-quality image source is provided free of charge to N. Korea, research materials can be enriched. In the field of NLP, it calls for proposing exchanges such as holding a Korean language information conference, developing a Korean computer operating system. The field of student education encourages support for remote education contents and management know-how, as well as joint research on student remote evaluation.

CNN-based Skip-Gram Method for Improving Classification Accuracy of Chinese Text

  • Xu, Wenhua;Huang, Hao;Zhang, Jie;Gu, Hao;Yang, Jie;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6080-6096
    • /
    • 2019
  • Text classification is one of the fundamental techniques in natural language processing. Numerous studies are based on text classification, such as news subject classification, question answering system classification, and movie review classification. Traditional text classification methods are used to extract features and then classify them. However, traditional methods are too complex to operate, and their accuracy is not sufficiently high. Recently, convolutional neural network (CNN) based one-hot method has been proposed in text classification to solve this problem. In this paper, we propose an improved method using CNN based skip-gram method for Chinese text classification and it conducts in Sogou news corpus. Experimental results indicate that CNN with the skip-gram model performs more efficiently than CNN-based one-hot method.

MSFM: Multi-view Semantic Feature Fusion Model for Chinese Named Entity Recognition

  • Liu, Jingxin;Cheng, Jieren;Peng, Xin;Zhao, Zeli;Tang, Xiangyan;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1833-1848
    • /
    • 2022
  • Named entity recognition (NER) is an important basic task in the field of Natural Language Processing (NLP). Recently deep learning approaches by extracting word segmentation or character features have been proved to be effective for Chinese Named Entity Recognition (CNER). However, since this method of extracting features only focuses on extracting some of the features, it lacks textual information mining from multiple perspectives and dimensions, resulting in the model not being able to fully capture semantic features. To tackle this problem, we propose a novel Multi-view Semantic Feature Fusion Model (MSFM). The proposed model mainly consists of two core components, that is, Multi-view Semantic Feature Fusion Embedding Module (MFEM) and Multi-head Self-Attention Mechanism Module (MSAM). Specifically, the MFEM extracts character features, word boundary features, radical features, and pinyin features of Chinese characters. The acquired font shape, font sound, and font meaning features are fused to enhance the semantic information of Chinese characters with different granularities. Moreover, the MSAM is used to capture the dependencies between characters in a multi-dimensional subspace to better understand the semantic features of the context. Extensive experimental results on four benchmark datasets show that our method improves the overall performance of the CNER model.

AI-Based Project Similarity Evaluation Model Using Project Scope Statements

  • Ko, Taewoo;Jeong, H. David;Lee, JeeHee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.284-291
    • /
    • 2022
  • Historical data from comparable projects can serve as benchmarking data for an ongoing project's planning during the project scoping phase. As project owners typically store substantial amounts of data generated throughout project life cycles in digitized databases, they can capture appropriate data to support various project planning activities by accessing digital databases. One of the most important work tasks in this process is identifying one or more past projects comparable to a new project. The uniqueness and complexity of construction projects along with unorganized data, impede the reliable identification of comparable past projects. A project scope document provides the preliminary overview of a project in terms of the extent of the project and project requirements. However, narratives and free-formatted descriptions of project scopes are a significant and time-consuming barrier if a human needs to review them and determine similar projects. This study proposes an Artificial Intelligence-driven model for analyzing project scope descriptions and evaluating project similarity using natural language processing (NLP) techniques. The proposed algorithm can intelligently a) extract major work activities from unstructured descriptions held in a database and b) quantify similarities by considering the semantic features of texts representing work activities. The proposed model enhances historical comparable project identification by systematically analyzing project scopes.

  • PDF

AUTOMATED HAZARD IDENTIFICATION FRAMEWORK FOR THE PROACTIVE CONSIDERATION OF CONSTRUCTION SAFETY

  • JunHyuk Kwon;Byungil Kim;SangHyun Lee;Hyoungkwan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.60-65
    • /
    • 2013
  • Introducing the concept of construction safety in the design/engineering phase can improve the efficiency and effectiveness of safety management on construction sites. In this sense, further improvements for safety can be made in the design/engineering phase through the development of (1) an automated hazard identification process that is little dependent on user knowledge, (2) an automated construction schedule generation to accommodate varying hazard information over time, and (3) a visual representation of the results that is easy to understand. In this paper, we formulate an automated hazard identification framework for construction safety by extracting hazard information from related regulations to eliminate human interventions, and by utilizing a visualization technique in order to enhance users' understanding on hazard information. First, the hazard information is automatically extracted from textual safety and health regulations (i.e., Occupational Safety Health Administration (OSHA) Standards) by using natural language processing (NLP) techniques without users' interpretations. Next, scheduling and sequencing of the construction activities are automatically generated with regard to the 3D building model. Then, the extracted hazard information is integrated into the geometry data of construction elements in the industry foundation class (IFC) building model using a conformity-checking algorithm within the open source 3D computer graphics software. Preliminary results demonstrate that this approach is advantageous in that it can be used in the design/engineering phases of construction without the manual interpretation of safety experts, facilitating the designers' and engineers' proactive consideration for improving safety management.

  • PDF