• Title/Summary/Keyword: Natural gas hydrate

Search Result 102, Processing Time 0.025 seconds

Experimental Study on the Structural Characteristics of Gas Hydrates for the Transportation of Natural Gas (천연가스 수송을 위한 가스 하이드레이트의 구조적 특성에 대한 실험적 연구)

  • Kim, Nam-Jin;Kim, Chong-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.251-258
    • /
    • 2003
  • Natural gas hydrates typically contain 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I and II. When referred to standard conditions, 1㎥ solid hydrates contain up to 172N㎥ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. So, the tests were performed on the formation of natural gas hydrate is governed by the pressure, temperature, gas composition etc. The results show that the formation pressure of structure II is lower about 65% and the solubility is higher about 3 times than that of structure I.

Equilibrium Conditions of Methane Hydrate added Help Gases (보조가스가 첨가된 메탄 하이드레이트 상평형 조건에 대한 연구)

  • Kim, Nam-Jin;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.51-58
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor.

Overview of Gas Hydrates as a Future Energy Source and Their Physical/Chemical Properties (미래 에너지로서 가스 하이드레이트의 개관 및 물리/화학적 특성)

  • Cha, Minjun;Min, Kyoung-Won
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.670-687
    • /
    • 2018
  • This paper reviews the structures, physical and chemical properties, origins and global distribution, amount of energy resources, production technologies, and environmental impacts of gas hydrates to understand the gas hydrates as future energy sources. Hydrate structures should be studied to clarify the fundamentals of natural gas hydrates, hydrate distributions, and amount of energy sources in hydrates. Phase equilibria, dissociation enthalpy, thermal conductivity, specific heat, thermal diffusivity, and fluid permeability of gas hydrate systems are important parameters for the the efficient recovery of natural gas from hydrate reservoirs. Depressurization, thermal stimulation, inhibitor injection, and chemical exchange methods can be considered as future technologies to recover the energy sources from natural gas hydrates, but so far depressurization is the only method to have been applied in test productions of both onshore and offshore hydrates. Finally, we discuss the hypotheses of environmental impacts of gas hydrates and their contribution to global warming due to hydrate dissociation.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.50-57
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

Experimental Investigation on the Enhancement of Methane Hydrate Formation in the Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 메탄 하이드레이트 충진율 증대에 대한 실험적 연구)

  • 김남진;정재성;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.863-870
    • /
    • 2002
  • Fossil fuels have been depleted gradually and new energy resource which can solve this shortage is needed now. Methane hydrate, non-polluting new energy resource, satisfies this requirement and considered the precious resource prevent the global warming. Fortunately, there are abundant resources of methane hydrate distribute in the earth widely, so developing the techniques that can use these gases effectively is fully valuable. the work presented here is to develop the skill which can transport and store methane hydrate. As a first step, the equilibrium point experiment has been carried out by increasing temperatures in the cell at fixed pressures. The influence of gas consumption rates under variable degree of subcooling, stirring and water injection has been investigated formation to find out kinetic characteristics of the hydrate. The results of present investigation show that the enhancements of the hydrate formation in terms of the gas/water ratio are closely related to operational pressure, temperature, degrees of subcooling, stirring rate, and water injection.

Gas Hydrate (가스 하이드레이트)

  • Ryu Byong-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.609-614
    • /
    • 2005
  • Gas hydrates are ice-l ike sol id compounds that are composed of water and natural gas. All common gas hydrates belong to the three crystal structures that are composed of five polyhedral cavities formed by hydrogen bonded water molecules and stable in specific high pressure and low temperature conditions. Gas hydrates contain large amounts of organic carbon and widely occur in deep oceans and permafrost regions, and they may therefore represent a potential energy resource in the future. United States and Japan perform the national R&D programs for the commercial production of gas hydrates in 2010's. The study on gas hydrates are also important for exploration and development of natural gas in the regions where gas hydrates are accumulated and could be formed. Although their global abundance is debated, they play an important role in global climate change since methane is a 50 times more effect ive greenhouse gas than carbon dioxide. Natural gas hydrates also form a possible natural hazard if rapidly dissociated and can cause slides and slumps and in the marine environment associated tsunamis.

  • PDF

Nozzle effect on the formation of Methane hydrate

  • Seo, Hyang-Min;Park, Sung-Seek;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.226-229
    • /
    • 2008
  • When methane hydrate is artificially formed to store and transport large quantity of natural gas, its reaction time may be too long and the gas consumption in water becomes relatively low, the reaction rate between water and methane gas is low. Therefore, the present investigation focuses on the rapid production of hydrates and increases the gas consumption by injecting water into methane gas utilizing nozzle. the hydrate in water injection using a nozzle formed rapidly more than that in gas injection, and the gas consumption of methane hydrate in water injection is about three to four times greater than that in gas injection according to subcooling.

  • PDF

The R&D - Validity of Gas hydrates (가스 하이드레이트 R&D 타당성 평가)

  • Kim Yu Jeong;Kim Seong Yong;Huh Dae-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.647-650
    • /
    • 2005
  • Gas hydrates draw great at tent ion recently as a new clean energy resources substituting conventional oil and gas hydrate its presumed huge amount of volume reaching 10 trillion tons of gas and environmentally friendly characteristics. Gas hydrate can contribute to the rapidly increasing consumption of natural gas in Korea and achieve the self support target by 2010 which is $30\%$ of total natural gas demand. This paper shows the importance and benefit of Gas hydrate comparing with new & renewable energy in Korea

  • PDF