• Title/Summary/Keyword: Natural filler

Search Result 93, Processing Time 0.023 seconds

Influence of Blending Method on the Generation of Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Sanghoon Song;Junhwan Jeong;Jin Uk Ha;Daedong Park;Gyeongchan Ryu;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Because particulate matter has emerged as a major contributor to air pollution, the tire industry has conducted studies to reduce particulate matters from tires by improving tire performance. In this study, we compared the conventional blending method, in which rubber, filler, and additives are mixed simultaneously, to the Y-blending method, in which masterbatches are blended. We manufactured carbon black (CB)-filled natural rubber (NR)/butadiene rubber (BR) blend and silica-filled epoxidized NR/BR blend compounds to compare the effects of the two blending methods on the physical properties of the compounds and the amount of particulate matter generated. The Y-blending method provided uniform filler distribution in the heterogeneous rubber matrix, improved processability, and exhibited low rolling resistance. This method also improved physical properties owing to the excellent filler-rubber interaction. The results obtained from measuring the generation of particulate matter indicated that, the Y-blending method reduced PM2.5 particulate matter generation from the CB-filled and silica-filled compounds by 38% and 60%, and that of PM10 by 29% and 67%, respectively. This confirmed the excellence of the Y-blending method regarding the physical properties of truck bus radial tire tread compounds and reduced particulate matter generated.

A Study on the Applicability of Heavyweight Waste Glass and Steel Slag as Aggregate in Heavyweight Concrete (고밀도 폐유리와 제강슬래그의 중량 콘크리트 골재로의 적용성에 관한 연구)

  • Choi, So-Yeong;Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2019
  • The many countries are facing the shortage of natural resources, and the supply of aggregates are being exhausted. To consider this situation a variety of studies were performed for the development of alternative resources. In particular, high density filler material was used for shielding radioactive waste, large amount of natural aggregates are required in order to produce filler material. Also, in order to improve the shielding performance of filler material, it is required to increase the density of the filler material. Therefore, in this study was carried out to provide basic data for expanding the feasibility of high density industrial waste resource as aggregate in heavyweight concrete. From the test results, OPC case, concrete strength decreased by using heavyweight waste glass as fine aggregate, however, it is improved by using mineral admixture as binder. Therefore, when the heavyweight waste glass and steel slag are applied to heavyweight concrete, it is desirable to use mineral admixture, especially to use BFS than FA. Meanwhile, when the steel slag was replaced as coarse aggregate of heavyweight concrete, elasticity of modulus and radiation shielding performance can be improved owing to high density of steel slag.

Vibration analysis of honeycomb sandwich composites filled with polyurethane foam by Taguchi Method

  • Aydin, Muhammet R.;Gundogdu, Omer
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.461-470
    • /
    • 2018
  • In this study, the effect of polyurethane foam filler, in addition to surface layer thickness and core material thickness, on vibration characteristics of sandwich structures was investigated. The manufacturing process was carried out according to the Taguchi method. The natural frequencies and damping ratios of the produced samples were determined experimentally for fixed-free boundary conditions. In addition, solid models were developed for test samples and their finite element analyses were performed with $ANSYS^{(R)}$ to obtain their natural frequencies and mode shapes. An acceptably good agreement was found with the comparison of experimental results with the numerically obtained ones. The most effective parameters on the vibration characteristics of the sandwich structure were determined by the Taguchi method.

Evaluation of Performance of Modified Recycling Asphalt Mixture and Normal Asphalt Mixture Using Basalt Powder Sludge as Filler (현무암 석분슬러지를 채움재로 활용한 개질재생아스팔트혼합물과 일반아스팔트혼합물의 공용성 평가)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.611-619
    • /
    • 2018
  • Basalt powder sludge (abbreviated BPS) is an inevitable industry by product resulted from the stone processing. Recently, demands for natural materials have been increasing in the construction and landscaping fields, therefore, amounts of BPS have been also increasing. Since most of BPS are used as landfill and earth soil, it is necessary to figure out to expedite their utilization. In this study, by considering the characteristics of precipitation of Jeju, effectiveness of BPS as a filler for asphalt compounds mixed with cement were analyzed. As a result, BPS satisfies quality criterion required in KS F 3501. Marshall mixing designs were performed to determine the optimal asphalt content for the Modified recycling asphalt mixture (27% recycling aggregate) and the Normal asphalt mixture. Effectiveness of BPS were identified by the Marshall Stability Test with the mixing ratio (level 3) of two asphalt compounds and composition ration (level 3) of BPS and cement. Performance of asphalt compounds shown appropriate effect of mixing and composition ratios of the filler were assessed. Test results show that two types of asphalt compounds satisfy the quality standards of the MLIT (2015). Therefore, BPS could be used as filler for asphalt compounds.

A Study on the Application of Filler to the Bark of Wooden Sculpture (목제 조각품의 수피부에 대한 충전제 적용 연구)

  • Kim, Young Mok;Kwon, Hee Hong;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • Conservation treatment that involved filling the lifting parts of wooden cultural heritage is carried out by obtaining wood or wood powder of the same species and mixing it with synthetic resin or natural glue to charge the blank area. Various concentrations and mixing ratios of adhesives and additives are used, depending on the type and condition of the target. Accordingly, in this study, we determined the conditions of the filler suitable for conservation treatment of wooden sculptures with lifted or separated bark in the National Museum of Modern and Contemporary Art. The optimal filler conditions for each adhesive were selected based on drying speed, shrinkage and expansion rates, and physical deformation degree. Then, to verify their actual applicability, these fillers were applied to wood and exposed to high-humidity environment and their cross-sections were observed. The fillers showed stable application in the following order: animal glue, PVAc adhesive, acrylic adhesive. In conclusion, a 1:2 mixture of animal glue and wood powder is a suitable filler for conservation treatment of wooden sculpture with lifted bark. The results of this study suggest appropriate ways to stabilize the bark that was lifted or separated from a wooden sculpture, thus enabling the future conservation treatment of the artworks under similar conditions.

Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass

  • Saritprava Sahoo;Sarada Prasad Parida;Pankaj Charan Jena
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.529-540
    • /
    • 2023
  • A novel laminated-hybrid-composite-beam (LHCB) of glass-epoxy infused with flyash and graphene is constructed for this study. The conventional mixture-rule and constitutive-relationship are modified to incorporate filler and lamina orientation. Eringen's non-local-theory is used to include the filler effect. Hamilton's principle based on fifth-order-layer-wise-shear-deformation-theory is applied to formulate the equation of motion. The analogous shear-spring-models for LHCB with multiple-cracks are employed in finite-element-analysis (FEA). Modal-experimentations are conducted (B&K-analyser) and the findings are compared with theoretical and FEA results. In terms of dimensionless relative-natural-frequencies (RNF), the dynamic-response in cantilevered support is investigated for various relative-crack-severities (RCSs) and relative-crack-positions (RCPs). The increase of RCS increases local-flexibility in LHCB thus reductions in RNFs are observed. RCP is found to play an important role, cracks present near the end-support cause an abrupt drop in RNFs. Further, multiple cracks are observed to enhance the nonlinearity of LHCB strength. Introduction of the first to third crack in an intact LHCB results drop of RNFs by 8%, 10%, and 11.5% correspondingly. Also, it is demonstrated that the RNF varies because of the lamina-orientation, and filler addition. For 0° lamina-orientation the RNF is maximum. Similarly, it is studied that the addition of graphene reduces weight and increases the stiffness of LHCB in contrast to the addition of flyash. Additionally, the response of LHCB to moving mass is accessed by appropriately modifying the numerical programs, and it is noted that the successive introduction of the first to ninth crack results in an approximately 40% to 120% increase in the dynamic-amplitude-ratio.

Effect of Functionalized BR Content on the Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Junhwan Jeong;Sanghoon Song;Jin Uk Ha;Daedong Park;Jaeyun Kim;Yeongmin Jung;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.64-72
    • /
    • 2024
  • As air pollution continues to increase owing to increasing traffic centered in urban areas, the tire industry is researching methods to reduce particulate matter. In this study, functionalized lithium butadiene rubber (F-LiBR) was applied to a natural rubber (NR)/butadiene rubber (BR) blend compound often used in truck bus radial (TBR) tire treads. The effect of the functional group that can react with carbon black (CB) in BR was investigated in terms of the dispersion of CB and the compound performance, including the generation of particulate matter. Compounds that were substituted with F-LiBR exhibited enhanced interaction with CB, resulting in excellent filler dispersion. Although F-LiBR exhibited lower crosslinking density and inferior abrasion resistance due to its high vinyl content, the compound with 30 phr of F-LiBR was advantageous in terms of its rolling resistance due to the excellent filler dispersion, which was also effective in reducing the amount of generated particulate matter (up to 56% reduction for PM2.5, and 67% reduction for PM10). The results confirmed the benefits of the introduction of functional groups into TBR tire tread compounds, which can aid in improving the fuel efficiency and reducing particulate matter generation.

Use of Polyethylene as an Additive in Plywood Adhesive (합판 접착제의 첨가제로서 폴리에틸렌의 이용)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.14-18
    • /
    • 1998
  • A low density polyethylene(LDPE) was examined as an additive in phenol-formaldehyde(PF) resin adhesive for bonding radiata pine plywood. The LDPE was supplied by the commercial manufacturer. The LDPE was compared to a commercial filler commonly used in structural plywood adhesives in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins Inc.. using plywood-type PF resin. A total of 48 three-ply plywoods. 6.3 mm nominal thickness and 30 by 30 em in size, were made at two press times (4 and 5 min). two press temperatures (150 and $160^{\circ}C$) and 30 minute assembly times for four adhesive mixing types. Evaluations of the LDPE addition were carried out by performance tension shear tests after two cycle boil aging tests on plywood per the U.S. Product Standard PS I-83. After accelerated-aging tests. plywoods were exhibited no delamination. The test results included tension shear strength and estimated wood failure values. The plywood test results support the use of polyethylene as an additive in plywood adhesives.

  • PDF

A Study on the Dynamic Elastic Modulus of the materials for Floor Impact Sound Reduction (바닥 충격음 저감용 소재의 동탄성 계수에 관한 연구)

  • Park, Choon-Keun;Lee, Jong-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.930-935
    • /
    • 2005
  • In order to synthesis of the materials and modulus for floor impact sound reduction, we investigated effect on dynamic elastic modulus of floor impact sound reduction materials and module made by inorganic porous materials, EVA chips and so on. We find correlation property between dynamic elastic modulus and light-weight impact noise. And we measured the dynamic elastic modulus of materials and module for floor impact sound reduction. And we predicted reduction efficiency on floor Impact Noise of those. The dynamic elastic modulus is reduced by increase of filler contents and filler species. When the materials for floor impact sound reduction is consisted of l5wt% EVA Chip and l5wt% inorganic porous materials, its dynamic elastic material is the lowest. And when the module is consisted of PE (upper side), PS embossing board(lower side) and the materials for floor impact sound reduction(middle), its dynamic elastic material is the lowest.

  • PDF

Effect of Molecular Weight of Epoxidized Liquid Isoprene Rubber as a Processing aid on the Vulcanizate Structure of Silica Filled NR Compounds

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • In this study, epoxidized liquid isoprene rubber (E-LqIR) was used as a processing aid in a silica-filled natural rubber compound to improve the fuel efficiency, abrasion resistance, and oil migration problems of truck and bus radial tire tread. The wear resistance, fuel efficiency, and extraction resistance of the compound were evaluated according to the molecular weight of E-LqIR. Results of the evaluation showed that the E-LqIR compound had a lower chemical crosslink density than that of a treated distillate aromatic extract (TDAE) oil compound because of the sulfur consumption of E-LqIR. However, the filler-rubber interaction improved because of the reaction of E-LqIR with silica and crosslink with the base rubber by sulfur. As the molecular weight of E-LqIR increased, crosslink with sulfur was facilitated, and the filler-rubber interaction improved, resulting in improved abrasion resistance. The fuel efficiency performance of the E-LqIR compound was poorer than that of the TDAE oil compound because of the low chemical crosslink density and hysteresis loss at the free chain end of E-LqIR. However, the fuel efficiency performance improved as the molecular weight of E-LqIR increased.