• Title/Summary/Keyword: Natural fibers

Search Result 366, Processing Time 0.023 seconds

A Review on the Flammability and Flame Retardant Properties of Natural Fibers and Polymer Matrix Based Composites

  • Prabhakar, M.N.;Shah, Atta Ur Rehaman;Song, Jung-Il
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.29-39
    • /
    • 2015
  • Natural fibers reinforced polymer composites are being used in several low strength applications. More research is going on to improve their mechanical and interface properties for structural applications. However, these composites have serious issues regarding flammability, which are not being focused broadly. A limited amount of literature has been published on the flame retardant techniques and flammability factor of natural fibers based polymer matrix composites. Therefore, it is needed to address the flammability properties of natural fibers based polymer composites to expand their application area. This paper summarizes some of the recent literature published on the subject of flammability and flame retardant methods applied to natural fibers reinforced polymer matrix composites. Different factors affecting the flammability, flame retardant solutions, mechanisms and characterization techniques have been discussed in detail.

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending( II) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(II))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2008
  • Regenerated composite fibers were prepared from solution of styela clava tunics(SC) and poly vinyl alchol(PVA) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt%/wt%) as a solvent by dry jet-wet spinning. Structure and physical properties of regenerated composite fibers were investigated through birefrngence, x-ray diffratograms, tenacity, fibrillation and SEM. Optimal blend ratio of SC/PVA for mechanical properties of composite fibers was 70/30 and total weight was 4wt% concentrations in NMMO/$H_2O$ solvent system. Crystallinity index of composite fibers were decreased as the PVA contents increased. Fibrillation of $10{\sim}20wt%$ PVA blended fibers were occurred less than pure SC fiber. Shape of composite fibers were a circle cross section within 10wt% PVA content. But the cross section of fibers were changed as crushed flat with the PVA contents increased.

Study on the Improvement of Flame Retardancy of Bamboo Fiber Using Eco-Friendly Liquid Flame Retardant (친환경 액상 난연제를 이용한 대나무섬유의 난연화 연구)

  • Dong-Woo, Lee;Maksym, Li;Jung-il, Song
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.456-462
    • /
    • 2022
  • Since natural fibers are highly flammable, it is not easy to make them flame retardant. In this study, a liquid flame retardant based on phytic acid, APTES, and Thiourea, which are flame retardant candidates derived from nature, was prepared and its performance was verified through flame retardant treatment and flame retardancy evaluation of bamboo fibers. When a liquid flame retardant is used, it is possible to treat a large amount of natural fibers with flame retardant treatment. Nine types of flame-retardant treated bamboo fibers were prepared according to the Taguchi design of experiment method. Thereafter, vertical burning test and microcalorimeter test were performed for flame retardancy evaluation, and the surface of natural fibers before and after flame-retardant treatment was compared using scanning electron microscope. The results show that phytic acid has a significant effect on improving the flame retardancy of natural fibers. Through microstructure analysis, it was assumed that the phytic acid helps flame retardant to uniformly adhere to the surface of natural fibers. If such research results are utilized, it is possible to make a large amount of natural fibers high flammability in an eco-friendly way, which is expected to be advantageous for the application of prototypes.

Recent Developments in Natural Fiber Reinforced Composites (천연섬유보강 복합재료의 최근 연구 개발)

  • Mirza, Foisal Ahmed;Afsar, Ali Md.;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • Natural fiber reinforced composites are emerging as low-cost, lightweight, recyclable, and eco-friendly materials. These are biodegradable and non-abrasive. Due to eco-friendly and biodegradable characteristics of natural fibers, they are being considered as potential candidates to replace the conventional fibers. The chemical, mechanical, and physical properties of natural fibers have distinct features depending upon the cellulose content of the fibers which varies from fiber to fiber. The mechanical properties of composites are influenced mainly by the adhesion between matrix and fibers. Several chemical and physical modification methods of fiber surface were incorporated to improve the tiber-matrix adhesion resulting in the enhancement of mechanical properties of the composites. This paper outlines the works reported on natural tiber reinforced composites with special reference to the type of fibers, polymer matrix, processing techniques, treatment of fibers, and fiber-matrix interface.

Performance of polymer concrete incorporating waste marble and alfa fibers

  • Mansour, Rokbi;El Abidine, Rahmouni Z.;Brahim, Baali
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.331-343
    • /
    • 2017
  • In this study a polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with natural Alfa fibers has been studied. The results of flexural testing of unreinforced polymer concrete with different rates of charges (marble) showed that the concrete with 20% of marble is stronger and more rigid compared to other grades. Hence, a rate of 20% of marble powder is selected as the optimal value in the development of polymer concrete reinforced Alfa fibers. The fracture results of reinforced polymer concrete with 1 and 2 wt% of chopped untreated or treated Alfa fibers showed that treated Alfa (5% NaOH) fiber reinforced polymer concrete has higher fracture properties than other composites. We believe that this type of concrete provides a very promising alternative for the building industry seeking to achieve the objectives of sustainable development.

Physical and Chemical Properties of Kapok (Ceiba pentandra) and Balsa (Ochroma pyramidale) Fibers

  • Purnawati, Renny;Febrianto, Fauzi;Wistara, I Nyoman J;Nikmatin, Siti;Hidayat, Wahyu;Lee, Seung Hwan;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.393-401
    • /
    • 2018
  • Natural fibers derived from lignocellulosic materials are considered to be more environment-friendly than petroleum-based synthetic fibers. Several natural fibers, such as seedpod fibers, have a potential for development, including kapok and balsa fibers. The characteristics of both fibers were evaluated to determine their suitability for specific valuable applications. The purpose of this study was to analyze some important fundamental properties of kapok and balsa fibers, including their dimensions, morphology, chemical components, and wettability. The results showed that the average fiber lengths for kapok and balsa were 1.63 and 1.30 cm, respectively. Kapok and balsa fibers had thin cell walls and large lumens filled with air. The kapok fiber was composed of 38.09% ${\alpha}-cellulose$, 14.09% lignin, and 2.34% wax content, whereas the balsa fiber was composed 44.62% ${\alpha}-cellulose$, 16.60% lignin, and 2.29% wax content. The characteristics of kapok and balsa fibers were examined by X-ray diffraction, Fourier-transform infrared spectroscopy and differential scanning calorimetry analyses. The contact angle of the distilled water on kapok and balsa fibers was more than $90^{\circ}$, indicating that both fibers are hydrophobic with low wettability properties because of to the presence of wax on the fiber surface.

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending(I) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(I))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Regenerated composite fibers are prepared from solution(styela clava tunics /poly vinyl alchol) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt/wt) as a solvent by dry-wet spinning. The chemical cellulose (94%, ${\alpha}$-cellulose content) used for this study is extracted from styela clava tunics (SCT, Midduck), which are treated in chemical process and mechanical grinding. The structure and physical properties of regenerated composite fibers were investigated through IR-spetra, DSC, TGA and SEM. The optimal blend ratio of SCT/PVA for spinning solution was 70/30 and the total weight was 4% concentrations in NMMO/water solvent system. The fiber density, moisture contents and the degree of swelling were $1.5(g/cm^3)$ 10.2(%) and 365(%), respectively. The crystallinity index of composite fibers are decreased as the PVA contents increased. Thermal decomposition of composite fibers took place in two stages at around $250^{\circ}C$ and $550^{\circ}C$. The best thermal stability was obtained with 30% PVA contents.

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Characteristics of Kapok Fibers According to Various Pretreatment Conditions (전처리 처리 조건에 따른 케이폭 섬유의 특성)

  • Hong, Seok Il;Lee, Hee Dong;Shim, Jae Yun;Seo, Won Jin;Lee, Beom Soo
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • The kapok fibers which are the functional fiber materials having natural hollows are environment friendly materials the demand and interest of which are increasing. The kapok fibers are environment friendly and natural hollow fibers which are 5-8 times lighter than cottons and have excellent performances in thermo keeping property, air permeability, bulkiness and resilience. In this study, the pretreatment according to the dyeing behaviors of kapok fibers were studied. Pretreatment(scouring, bleaching) were a variety of conditions. Scouring and bleaching, images of changed surfaces and cross-sections and dyeing behaviors of the dye-o-meter according to the concentration measured in meters and compared. Although the final exhaustion ratio of the kapok fibers scoured with a high concentration recipe was almost as same as that of the kapok fibers bleached with a high concentration recipe, the initial absorption speed of the kapok fibers scoured with the high concentration recipe was faster than that of the kapok fibers bleached with the high concentration recipe.

Effective Material Properties of Composite Materials by Using a Numerical Homogenization Approach (균질화 접근법을 통한 복합재의 유효물성치 계산)

  • Anto, Anik Das;Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • Due to their flexible tailoring qualities, composites have become fascinating materials for structural engineers. While the research area of fiber-reinforced composite materials was previously limited to synthetic materials, natural fibers have recently become the primary research focus as the best alternative to artificial fibers. The natural fibers are eco-friendly and relatively cheaper than synthetic fibers. The main concern of current research into natural fiber-reinforced composites is the prediction and enhancement of the effective material properties. In the present work, finite element analysis is used with a numerical homogenization approach to determine the effective material properties of jute fiber-reinforced epoxy composites with various volume fractions of fiber. The finite element analysis results for the jute fiber-reinforced epoxy composite are then compared with several well-known analytical models.