• Title/Summary/Keyword: Natural fiber composite

Search Result 232, Processing Time 0.029 seconds

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

Dynamic characterization of a CNT reinforced hybrid uniform and non-uniform composite plates

  • Lakshmipathi, Jakkamputi;Vasudevan, Rajamohan
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.31-46
    • /
    • 2019
  • In the present study, the various dynamic properties of MWCNT embedded fiber reinforced polymer uniform and tapered composite (MWCNT-FRP) plates are investigated. Various configurations of a tapered composite plate with ply-drop off and uniform composite plate have been considered for the development of the finite element formulation and experimental investigations. First order shear deformation theory (FSDT) has been used to derive the kinetic and potential energy equations of the hybrid composite plates by including the effect of rotary inertia, shear deformation and non-uniformity in thickness of the plate. The governing equations of motion of FRP composite plates without and with MWCNT reinforcement are derived by considering a nine- node rectangular element with five degrees of freedom (DOF) at each node. The effectiveness of the developed finite element formulation has been demonstrated by comparing the natural frequencies and damping ratio of FRP composite plates without and with MWCNT reinforcement obtained experimentally. Various parametric studies are also performed to study the effect of CNT volume fraction and CNT aspect ratio of the composite plate on the natural frequencies of different configurations of CNT reinforced hybrid composite plates. Further the forced vibration analysis is performed to compare the dynamic response of the various configurations of MWCNT-GFRP composite plate with GFRP composite plate under harmonic excitations. It was observed that the fundamental natural frequency and damping ratio of the GFRP composite plate increase approximately 8% and 37% respectively with 0.5wt% reinforcement of MWCNT under CFCF boundary condition. The natural frequencies of MWCNT-GFRP hybrid composite plates tend to decrease with the increase of MWCNT volume fraction beyond 2% due to agglomeration of CNT's. It is also observed that the aspect ratio of the CNT has negligible effect on the improvement of dynamics properties due to randomly orientation of CNT's.

A Study on Manufacturing and Structural Test of Wind Turbine System Blade using Natural Composite (자연섬유 복합재료 풍력 발전 시스템 블레이드 제작 및 구조 시험 연구)

  • Park, Hyun Bum
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.30-35
    • /
    • 2017
  • In this work, a manufacturing and structural test of 1kW class horizontal axis wind turbine blade using natural-fiber composite was performed. The aerodynamic design of blade was performed after investigation on design requirement. The structural design load was investigated after aerodynamic design of blade. And also, structural design of blade was carried out. The structural design of blade was carried out using the simplified methods such as the netting rule and the rule of mixture applied to composite. The structural safety of the designed blade structure is investigated through the various load cases, stress, deformation and buckling analyses using the FEM method. Finally, the blade manufacturing and structural test using natural composite was carried out.

Flapwise Bending Vibration Analysis of Rotating Composite Cantilever Beams (복합재 회전 외팔보의 면외방향 굽힘진동 해석)

  • Lee, Seung-Hyun;Shin, Sang-Ha;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.887-892
    • /
    • 2003
  • A modeling method for the modal analysis of a rotating composite beam is presented in this paper. Linear differential equations of motion are derived by using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion Symmetrical laminated layers are considered for the composite beam. The effects of the dimensionless angular velocity, the hub radius and the fiber orientation angle parameter on the variations of modal characteristics are investigated.

  • PDF

Vibration Control of a Glass-Fiber Reinforced Termoplastic Composite Beam (유리섬유를 함유한 열가소성 복합재 보의 진동제어)

  • 권대규;윤여흥;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.11-14
    • /
    • 2000
  • This paper presents the vibration control of a glass-fiber reinforced thermoplastic composite beam with a distributed PVDF sensor and piezo-ceramic achlator. The three types of different controllen which are PID, H$\infty$ , and p-synthesis ontrollcr are employed to achieve vibration suppression in the transient vibration of composite beam. In the H$\infty$ , controller design, 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to struchred uncertainty is adopled Lo suppress the vibration. If the controller designed by H$\infty$ , theory does not satisfy control performance, it is improved by $\mu$ -synthesis method with D-K iteration so that the$\mu$-contoller based on the structured singular value satisfies the nominal performance and robust performance Simulations and experiments were carried out with the designed controllers m order to demonstrate the suppression efficiency of each controller.

  • PDF

Flapwise Bending Vibration Analysis of Rotating Composite Cantilever Beams

  • Lee, Seung-Hyun;Shin, Sang-Ha;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.240-245
    • /
    • 2004
  • A modeling method for the modal analysis of a rotating composite cantilever beam is presented in this paper. Linear differential equations of motion are derived using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion. Symmetrical laminated composite beams are considered to obtain the numerical results. The effects of the dimensionless angular velocity, the hub radius and the fiber orientation angle on the variations of modal characteristics are investigated.

Outlook for Wood Plastic Composite in aspect of Market and Technology (신 목질 복합재료인 합성목재의 전망 - 시장과 기술의 측면에서 -)

  • Han, You-Soo
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.38-42
    • /
    • 2006
  • Wood Plastic Composite(WPC) has been introduced as a new constructional material in Europe and North America. The maintenance-free durability against weather was accepted by customers and the environment-friendly merits ignited the abrupt increase of market size. Domestic major companies have kicked off the WPC business at the market of outdoor constructional materials. Due to the high contents of natural wood fiber, the production equipments should be modified to remove the moisture, to prevent thermal degradation and to promote output rates. Materials including functional fillers play a critical role in rheological properties, which affects the physical and mechanical properties of the last products. More research might be performed for synergy effects combined by various academic fields from mechanical and chemical engineering to polymer process and material science.

Influence of water saturation on fracture toughness in woven natural fiber reinforced composites

  • Kim, Hyo-Jin;Seo, Do-Won
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.83-94
    • /
    • 2007
  • Woven sisal textile fiber reinforced composites were used to evaluate fracture toughness, tensile and three-point bending. The water absorption testing of all specimens was repeated five times in this study. All specimens were immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surfaces were taken to study the failure mechanism and fiber/matrix interfacial adhesion. It is shown that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples showed poor mechanical properties, such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrated a decrease in inclination with increasing cyclic times of wetting and drying for the epoxy and vinyl-ester.

Optimum Design of the Laminated Composite Sandwich Plate Structure of Honeycomb Core considering Vibration Characteristics (복합적층 하니콤 코어형 샌드위치 판무구조물의 진동특성을 고려한 최적설계)

  • Seo, J.;Hong, D. K.;Ahn, C. W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.710-715
    • /
    • 1997
  • This paper deals with the analysis of the optimum value of honeycomb core considering variable design parameter. As thickness and height of core rises in design parameter, natural frequency of laminated composite plate increases. The angle-phy has the maximum value when the plate of honeycomb core join to opposite direction. This paper shows that the natural frequency of CFRP was higher than that of GFRP and mode shapes were various at angle-ply.

  • PDF

Design of High Speed Composite Air Spindle System (초고속 복합재료 공기정압 주축의 설계)

  • 장승환;이대길;한흥삼
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • In order to enhance high speed stability the composite air spindle system composed of a high modulus carbon fiber composite shaft, powder contained epoxy composite squirrel cage rotor and aluminum tool holder was designed and manufactured. For the optimal design of the composite air spindle system, the stacking sequence and thickness of the composite shaft were selected by considering the fundamental natural frequency and deformation of the system. The analysis gave results that the composite air spindle system had 36% higher natural frequency relative to a conventional air spindle system. The dynamic characteristics of the composite spindle system were compared with those of a conventional steel air spindle system. From the calculated and test results, it was concluded that the composite shaft and the power contained composite rotor were able to enhance the dynamic characteristics of the spindle system effectively due to the low inertia and high speific stiffness of the composite materials.

  • PDF