• 제목/요약/키워드: Natural fiber composite

검색결과 232건 처리시간 0.023초

Finite Element Analysis of Carbon Fiber Composite Sandwich Panels Subjected to Wind Debris Impacts

  • Zhang, Bi;Shanker, Ajay
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.436-442
    • /
    • 2022
  • Hurricanes and tornadoes are the most destructive natural disasters in some central and southern states. Thus, storm shelters, which can provide emergency protections for low-rise building residents, are becoming popular nowadays. Both FEMA and ICC have published a series of manuals on storm shelter design. However, the authors found that the materials for related products in the market are heavyweight and hard to deliver and install; renovations are necessary. The authors' previous studies found that lightweight and high-performance composite materials can withstand extreme wind pressure, but some building codes are designated in wind-borne debris areas. In these areas, wind debris can reach greater than 100 mph speed. In addition, the impact damage on the composite materials is an increasing safety issue in many engineering fields; some can cause catastrophic results. Therefore, studying composite structures subjected to wind debris impact is essential. The finite element models are set up using the software Abaqus 2.0 to conduct the simulations to observe the impact resistance behavior of the carbon fiber composite sandwich panels. The selected wood debris models meet the FEMA requirements. The outcome of this study is then employed in future lab tests and compared with other material models.

  • PDF

황마섬유 보강 열경화성 복합재료의 기계적 특성 (Mechanical Properties of Jute Fiber Reinforced Thermosetting Composites)

  • 이창훈;송재은;남원상;변준형;김병선;황병선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.111-115
    • /
    • 2005
  • Recently, natural fibers draw much interests in composite industry due to low cost, light weight, and environment-friendly characteristics compared with glass fibers. In this study, mechanical properties were evaluated for two extreme cases of jute fiber orientations, i.e. the unidirectional yarn composites and the felt fabric composites. Samples of jute fiber composites were fabricated by RTM process using epoxy resin, and tensile, compression, and shear tests were conducted. As can be expected, unidirectional fiber specimens in longitudinal direction showed the highest strength and modulus. Compared with glass/epoxy composites of the similar fabric architecture and fiber volume fraction, the tensile strength and modulus of jute felt/epoxy composites reached only 40% and 50% levels. However, the specific tensile strength and modulus increased to 80% and 90% of the glass/epoxy composites. The main reason for the poor mechanical properties of jute composites is associated with the weak interfacial bonding between fiber and matrix. The effect of surface treatment of jute fibers on the interfacial bonding will be examined in the future work.

  • PDF

초음파 처리된 대나무섬유와 케냐프섬유 복합재의 기계적 특성 비교 연구 (Comparative Study on Mechanical Properties of Sonicated Bamboo and Kenaf Fiber Composite)

  • 이수경;박은영;박태성;안승국
    • 한국염색가공학회지
    • /
    • 제32권4호
    • /
    • pp.274-280
    • /
    • 2020
  • This study compared the mechanical properties of bamboo fiber composites and kenaf fiber composites through physical treatment (ultrasonic treatment). Kenaf, a composite of PP reinforced with bamboo fiber, was made using injection molding technology. PP was used as a binder and the ultrasonic treatment time of bamboo and kenaf was increased by 30 minutes to compare and study various mechanical properties of bamboo and kenaf composites through physical treatment. Interfacial properties such as internal cracks and internal structure of the wave cross section were confirmed using a scanning electron microscope (SEM). As a result of the ultrasonic treatment, most of the characteristics were fragile as the ultrasonic treatment time was increased, and it was confirmed that the natural characteristics of the twisted fibers had a great influence on the characteristics of the composite material.

천연섬유강화 폴리머 복합재료의 압축강도 특성 (Compressive Strength of Natural Fiber Reinforced Polymer Composites)

  • 송준희;문상돈;김유경;김홍건
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.140-144
    • /
    • 2010
  • In recent years there has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. The purpose of this study is to determine the characteristic of bending strength on bamboo fiber reinforced polymer composites. The parameters of RTM process depend on the weight ratio of bamboo fiber and resin, the number of bamboo ply and amount of hardening agent. Besides the existence of pore in composites according to vacuum time investigated a effect on mechanical properties of reinforced polymer composites. Test result shows that compressive strength was a maximum(approximately 1,840kgf/$cm^2$) value when weight ratio of resin was 12%.

접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향 (Effect of Spew fillet on Failure Strength Evaluation in Adhesive Bonded Joints involving Natural Fiber Reinforced Composites)

  • 김연직;윤호철;임재규
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.262-264
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked joints such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid fiber composites with a polyester and bamboo natural fiber layer adjacent to the spew fillet of adhesive bonded joints and hybrid stacked joints. The results are presented using tensile-shear strength graph and finite element analysis. The failure mechanisms are discussed in order to explain that spew fillet at the end of the overlap reduces greatly the adhesive shear and effects the tensile-shear strength in hybrid stacked joints.

  • PDF

Fiber-reinforced composite resin bridges: an alternative method to treat root-fractured teeth

  • Heo, Gun;Lee, Eun-Hye;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Restorative Dentistry and Endodontics
    • /
    • 제45권1호
    • /
    • pp.8.1-8.9
    • /
    • 2020
  • The replacement of missing teeth, especially in the anterior region, is an essential part of dental practice. Fiber-reinforced composite resin bridges are a conservative alternative to conventional fixed dental prostheses or implants. It is a minimally invasive, reversible technique that can be completed in a single visit. The two cases presented herein exemplify the treatment of root-fractured anterior teeth with a natural pontic immediately after extraction.

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.659-670
    • /
    • 2020
  • This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

친환경 소재를 적용한 500W급 고효율 수평축 풍력터빈 블레이드 설계에 관한 연구 (A Study on Design of 500W Class High Efficiency Horizontal Axis Wind Turbine System(HAWTS) Blade Using Natural Fiber Composites)

  • 박광림;공창덕;이하승;박현범
    • Composites Research
    • /
    • 제28권3호
    • /
    • pp.104-111
    • /
    • 2015
  • 본 연구에서 자연 섬유를 적용한 500W급 수평축 풍력 터빈 블레이드의 구조 설계 연구를 수행하였다. 기존의 유리섬유 재질 적용 블레이드와 아마 섬유 재질 적용 블레이드의 구조 설계 결과를 비교하였다. 블레이드의 구조 설계는 단순 설계 및 혼합 설계 기법를 적용하여 설계를 수행하였다. 설계된 블레이드의 구조적 안전성은 상용 유한요소프로그램을 사용하여 다양한 하중에 따라 선형 정적해석, 변형 해석, 좌굴 해석을 수행하였다. 제작공법으로는 RIM를 채택 하였으며, 시제품 제작을 통해 자연섬유에 완전 침투까지 요구된 시간을 Poly-worx 프로그램 해석 결과와 제작 결과를 비교하였다. 제작된 시제품 블레이드는 변형률, 고유 진동수, 변위 시험을 수행하여 구조해석 결과와 비교하였다. 비교 결과에 따라 해석 결과와 시험 결과가 잘 일치함을 확인하였다.

모재-섬유 함침 비율에 따른 건설용 GFRP 기둥구조의 고유진동 특성 (Natural Frequency Characteristics of GFRP Pole Structures for Civil Structures with Different Fiber-Volume Fraction)

  • 이상열
    • Composites Research
    • /
    • 제27권2호
    • /
    • pp.66-71
    • /
    • 2014
  • 본 연구는 GFRP 복합재료로 구성된 기둥 구조에 대하여 마이크로 역학 접근방법에 의한 섬유의 함침비율 변화에 따라 탄성계수를 예측하고 매크로 역학 기반으로 고유진동 특성을 분석하였다. 본 연구에서 제시하는 멀티 스케일 접근법에 의한 유한요소 모델은 해석의 정확성과 재료들 간의 상관관계를 상세하고 정확이 보여준다는 장점이 있다. 수치해석은 적층 갯수, 적층배열, 섬유함침비율의 변화에 따라서 고유진동의 변화를 분석하는데 중점을 두고 있다. 수치예제로부터 섬유와 모재의 재료비율은 거시적 동역학적 특성에 중요한 영향을 주고 있음을 알 수 있었다. 본 연구는 고유진동에 영향을 미치는 최적의 섬유와 모재 재료비율을 상세 분석하였으며, 해석 결과는 건설용으로서의 복합소재 기둥구조가 경제적이면서 우수한 동적 구조 성능을 만족하도록 설계하는데 기여할 수 있을 것으로 기대된다.

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber Bundles

  • Tamaryska, SETYAYUNITA;Ragil, WIDYORINI;Sri Nugroho, MARSOEM;Denny, IRAWATI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권6호
    • /
    • pp.392-403
    • /
    • 2022
  • Currently, composite board manufacturing using natural fibers has the potential to expand owing to environmental awareness. To produce a composite board, treatment is required to improve the mechanical and physical properties of the natural fibers. In this study, sodium chloride (NaCl) was used for the chemical treatment. However, studies on chemical treatments using NaCl are limited. This study aimed to investigate the characteristics of kenaf fibers after NaCl treatment. The NaCl treatment concentrations were 1, 3, and 5 wt.% at room temperature, with soaking durations of 1, 2, and 3 h. The tensile strength, strain, and Young's modulus were measured to evaluate the mechanical properties of the fibers. The fiber bundle diameter, weight change owing to treatment, and contact angle were determined to analyze the effect of NaCl treatment. The kenaf fiber bundle treated with 5 wt.% NaCl for 3 h exhibited the highest tensile strength, Young's modulus, reduction in fiber bundle diameter, weight change, and decrease in contact angle compared to those of untreated fiber bundles. The tensile properties of the fiber bundle exhibited a tendency to decrease with increasing fiber bundle diameter. Increasing the soaking duration from 1 to 2 h did not result in a significant decrease in the fiber bundle diameter or an increase in tensile strength. However, a further increase in the soaking duration from 2 to 3 h resulted in a considerable decrease in the fiber bundle diameter and an increase in the tensile strength.