• Title/Summary/Keyword: Natural essential oil

Search Result 215, Processing Time 0.025 seconds

Characterization of Natural Antiseptic System Utilized Propolis and Herb Essential Oil (프로폴리스와 허브에센셜오일을 이용한 천연방부제형의 특성)

  • Jeong, Noh-Hee;Shin, Kwang-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.99-108
    • /
    • 2007
  • The cosmetic and toiletries are necessary health care & household for common life. However we need antiseptic which is effecting harmlessly to the human body. There are propolis, Lavender, Lemon, essential oil in the natural antiseptic materials. This work proceeded design Natural-antiseptic system with three materials as above-mentioned. Natural-antiseptic system was accomplished with propolis (2%), Lavender essential oil (0.3%), Lemon essential oil (0.3%) safety out of Polysorbate 20 (0.5%), Polysorbate 80 (0.5%), PEG (60) hydrogenated castor oil (0.45%), ethanol (5%). The antimicrobial test was experimented on E. coli and Bacillus stearothermophilus. In this antimicrobial test, we found that the effect of antisepsis against E. coli and Bacillus stearothermophilus with propolis 0.3%, Lavender essential oil 0.045% and Lemon essential oil 0.045% was improved. Therefore could expect Natural-antiseptic system product for moisturizing skin toner for face, nourishing essence and wet tissue for clean other things.

Colorado Potato Beetle (Leptinotarsa decemlineata Say) Control Potential of Essential Oil Isolated from Iranian Cymbopogon citratus Stapf

  • Ebadollahi, Asgar;Geranmayeh, Jafar;Kamrani, Morteza
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.235-238
    • /
    • 2017
  • Colorado potato beetle is a most destructive insect pest of potato throughout the world. Although utilization of chemical insecticides is a main method for management of this pest, their negative side-effects such as threat to humans and the environmental pollution prompted researchers to search for natural alternatives. Recently plant essential oils with low or without side-effects against noun-targeted organisms and with high availability were considered as safe bio-pesticides. In the present study, toxicity of essential oil of Iranian lemongrass, Cymbopogon citratus Stapf, was evaluated against 3th instar larvae and adults of Colorado potato beetle by a leaf dipping method. Results displayed essential oil had notable toxicity against both larvae and adults after 24 and 48 h exposure times. Probit analysis revealed $LC_{50}$ values (lethal concentration to kill 50% of population) with 95% confidence limits were 10.32 (9.17 - 11.72) and 7.76 (6.80 - 8.74) ${\mu}l/ml$ for larvae and 6.27 (4.82 - 8.15) and 4.35 (3.24 - 5.62) ${\mu}l/ml$ for adults after 24 and 48 h, respectively. Based on regression analysis, a positive correlation between log concentration of essential oil and insect mortality was achieved. Results indicated C. citratus essential oil can be candidate as a natural alternative to the harmful chemical insecticides in the management of Colorado potato beetle.

The Antimicrobial Activity of Essential Oil from Dracocephalum foetidum against Pathogenic Microorganisms

  • Lee, Saet-Byoul;Cha, Kwang-Hyun;Kim, Su-Nam;Altantsetseg, Shataryn;Shatar, Sanduin;Sarangerel, Oidovsambuu;Nho, Chu-Won
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.53-57
    • /
    • 2007
  • A number of essential oils from Mongolian aromatic plants are claimed to have antimicrobial activities. The essential oil of Dracocephalum foetidum, a popular essential oil used in Mongolian traditional medicine, was examined for its antimicrobial activity. Eight human pathogenic microorganisms including B. subtilis, S. aureus, M. lutens, E. hirae, S. mutans, E. coli, C. albicans, and S. cerevisiae were examined. The essential oil of Dracocephalum foetidum exhibited strong antimicrobial activity against most of the pathogenic bacteria and yeast strains that were tested; by both the agar diffusion method and the minimum inhibitory concentration (MIC) assay ($MIC\;range\;was\;26-2592{\mu}g/ml$). Interestingly, Dracocephalum foetidum even showed antimicrobial activity against methicilin-resistant Staphylococcus aureus (MRSA) strains. We also analyzed the chemical composition of the oil by GC-MS and identified several major components, including n-Mentha-1,8-dien-10-al, limonene, geranial, and neral.

Chemical Composition and Biological Activity of Essential Oil of Agastache rugosa (Fisch. & C. A. Mey.) O. Kuntze (배초향 에센셜오일의 화학적 조성과 생리활성 특성)

  • Hong, Min Ji;Kim, Ju Ho;Kim, Hee Yeon;Kim, Min Ju;Kim, Song Mun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.95-110
    • /
    • 2020
  • Background: In Korea, Agastache rugosa (Fisch. & C. A. Mey.) O. Kuntze is one of the well-known perennial plants belonging to Lamiaceae. This mint-fragranced plant has long been used for the treatment of abdominal pain, congestion, chills, and diarrhea since the Goryeo Dynasty. Although this plant has various medicinal properties, it is only used as a spice and for landscape purposes. Methods and Results: The objective of this paper was to review the chemical composition and biological properties of the essential oil of A. rugosa. Several studies reported that the essential oil contains more than 60 different chemical components of monoterpene and sesquiterpene hydrocarbons and oxygenated hydrocarbons. The major component is methyl chavicol (estragole), accounting for 64% - 88% of the oil. The chemical composition of this essential oil vaired widely according to the planting time, environmental conditions, planting distance, fertilizer application, and harvesting time. Conclusions: The essential oil of A. rugosa possesses various pharmacological properties such as antioxidant, antibacterial, anticancer, antiviral, nematicidal, antifungal, insecticidal, wrinkle improver, stress reliever, and Alzheimer's disease alleviator. Hence, the essential oil from A. rugosa could be used for the development of high value-added industrial products in the near future.

Effects of lemon or cinnamon essential oil vapor on physicochemical properties of strawberries during storage

  • Elise Freche;John Gieng;Giselle Pignotti;Salam A. Ibrahim;Helen P. Tran;Dong U. Ahn;Xi Feng
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.549-561
    • /
    • 2023
  • Recently, consumers have gained an interest in natural and minimally processed foods, inciting the food industry to consider using of natural products as preservatives. Strawberries are a widely consumed fruit but are also highly perishable. Therefore, in this study, the physicochemical properties of strawberries (Fragaria×ananassa) were evaluated after a 12-h treatment with lemon essential oil (Citrus×limon) or cinnamon essential oil (Cinnamomum cassia) vapor during storage at 22℃ for 4 days in an accelerated shelf-life study and 4℃ for 18 days in a validation study. Weight loss was blunted in fruit treated with oil vapor during the first days of storage (p<0.05). Lemon essential oil delayed fruit darkening (p<0.05) but reduced the firmness of strawberries (p<0.05). Strawberries treated with cinnamon essential oil had a higher concentration of reducing sugars (p<0.05), and a decrease of 16.7% visible decay, although the difference was insignificant. Oil vapor treatment did not alter the pH, organic acid content, or soluble solid content during storage compared to the control. Since lemon and cinnamon essential oils have well-documented antimicrobial properties, they may be suitable for the natural preservation of fruit. This study provides new information on using essential oil vapor treatment to preserve fruits, and potentially decrease fruit loss and waste.

Comparison of essential oil composition between Angelica gigas and Angelica acutiloba

  • Park, C.H.;Juliani, H.R.;Park, H.W.;Yu, H.S.;Simon, J.E.
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.183-187
    • /
    • 2003
  • Two kinds of Angelica belong to Umbelliferae collected, the one is Angelica gigas that is inhabitant in Korea and the other is Angelica acutiloba that is indigenous in Japan at the field of Snyder Research and Extension Farm Rutgers University, New Jersey and was analyszed by GC and GC/MS. The composition of the essential oil of the different aerial parts of the Angelica has been studied. The oil yields obtained upon hydrodistillation were 0.18% (v/w) in Korean Angelica and 0.44% (v/w) in Japanese Angelica on dry root weight basis. By the growing stage in the Rutgers greenhouse condition, leaf and root of essential oil content a little decreased on 9 months later than 4 months later except for Angelica gigas leaf. Both of Angelica showed that amounts of essential oil content presented in order of leaf > petiole > root according to different plant part. The analysis of the essential oil from Angelica root led to the identification of 14 constituents totaling 64% in Korean Angelica and 13 constituents totaling 68% in Japanese Angelica. The major constituents of the Angelica root essential oil were ligustilide (47 %) and gamma terpi (14 %) in Korean Angelica, and alpha pinei (32 %) and nonane (25 %) in Japanese Angelica

  • PDF

Chemical Composition and Antioxidant Activity of Algerian Juniperus Phoenicea Essential Oil

  • Harhour, Aicha;Brada, Moussa;Fauconnier, Marie-Laure;Lognay, Georges
    • Natural Product Sciences
    • /
    • v.24 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • Berries and branches essential oil of Juniperus phoenicea were obtained by electromagnetic induction heating assisted extraction and by hydrodistillation with a yield varied from ($1.2{\pm}0.3$ to $2.4{\pm}0.7%$) and from ($0.6{\pm}0.1%$ to $1.1{\pm}0.1%$), respectively. forty eight compounds were identified representing (97.2 - 99.7%) of the oil. ${\alpha}$-Pinene (40.3 - 67.8%) and ${\delta}$-3-carene (13.5 - 26.8%) were the main compounds in berries and branches essential oils. Antioxidant activity was evaluated by three means: inhibition of 2, 2-diphenyl-1-picryl hydrazyl (DPPH) free radical, reducing power and ${\beta}$-Carotene/linoleic acid bleaching. The antioxidant activity of essential oils showed $IC_{50}$ ranging from $67.6{\pm}1.02{\mu}g/mL$ to $131.5{\pm}0.8{\mu}g/mL$ for berries and from $98{\pm}1.25{\mu}g/mL$ to $166.8{\pm}0.29{\mu}g/mL$ for the branches. Berries oil show more potent antioxidant activity compared to branches. This result is supported by the three methods investigated in this work.

Effects of the Essential Oil Components from Ligusticum chuanxiong on Proinflammatory Mediators of RAW264.7 Macrophage Cells

  • Lim, Hye-Rim;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.259-264
    • /
    • 2010
  • The essential oil fraction was obtained from the underground parts o of Ligusticum chuanxiong (Umbelliferae) by steam distillation, and its main components, Z-ligustilide and butylidene phthalide, were isolated by column chromatography. Its essential oil fraction and the isolated main components were examined for effects on their anti-inflammatory properties in RAW 264.7 macrophage cells to develop a new natural anti-inflammatory drug. The results showed that the L. chuanxiong essential oil fraction and its main components, Z-ligustilide and butylidene phthalide, inhibited the production of nitric oxide significantly in lipopolysaccharide (LPS)-treated RAW 264.7 cells. LPS-induced interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-$\alpha$) production was also decreased in a dose-dependent manner. In addition, western blot analysis revealed that the L. chuanxiong essential oil fraction and also its main components, Z-ligustilide, and butylidene phthalide reduced the expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS).

Combined Effects of the Essential Oil from Eucalyptus globulus with Ketoconazole against Candida and Trichophyton Species

  • Lim, Sook;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.14 no.1
    • /
    • pp.27-31
    • /
    • 2008
  • We have evaluated the combined antifungal effects of the essential oil from Eucalyptus globulus or its main component 1,8-cineole with ketoconazole. Checkerboard microtiter tests were used to analyze their effects against three Candida and six Trichophyton species. The susceptibility of the Trichophyton species to E. globulus essential oil differed distinctly. The fractional inhibitory concentration indices (FICIs) against the tested Candida species ranged between 0.09 and 0.38 for ketoconazole combined with E. globulus essential oil or 1,8-cineole, indicating significant synergism between ketoconazole and the oil samples. Similar experiments using Trichophyton species resulted in FICIs between 0.28 and 0.63, indicating relatively weaker combined effects than those observed with Candida species. Thus, the data reported here show that the anti-Candida effects of ketoconazole can be significantly improved in the presence of E. globulus essential oil or 1, 8-cineole.

Antibacterial and Antioxidant Activities of the Essential Oil from the Roots of Anthriscus sylvestris (전호(Anthriscus sylvestris) 뿌리 정유의 항균 및 항산화 작용)

  • Lim, Hyerim;Shin, Seungwon
    • YAKHAK HOEJI
    • /
    • v.56 no.5
    • /
    • pp.320-325
    • /
    • 2012
  • To develop a new effective and safe natural antibiotics and antioxidant the essential oil was extracted from the roots of Anthriscus sylvestris by steam distillation. Its composition was analyzed by GC-MS. The activities of the essential oil fraction and its main components were evaluated against antibiotic-susceptible and -resistant strains of some food-born bacteria. In addition the synergism was examined with this oil combined with antibiotic by checkerboard titer test. The antioxidant activities were determined by in 1,1-diphenyl-2-picryl-hydrazil (DPPH) free radical scavenging activity test and reducing power assay. The essential oil fraction of A. sylvestris revealed significant inhibiting activities against antibiotic-susceptible and -resistant species of Vibrio and Shigella with MICs ranged from 1.00~4.00 mg/ml. It showed synergistic or additive effects when it was combined with amphicillin or trimethoprim/sulfamethoxazole (1 : 9). Additionally, the essential oil fraction of A. sylvestris exhibited significant DPPH free radical scavenging activity and the reducing power.