• Title/Summary/Keyword: Natural drainage capacity

Search Result 29, Processing Time 0.027 seconds

Development of Urban Flood Analysis Model Adopting the Unstructured Computational Grid (비정형격자기반 도시침수해석모형 개발)

  • Lee, Chang Hee;Han, Kun Yeun;Kim, Ji Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.511-517
    • /
    • 2006
  • Flood damage is one of the most important and influential natural disaster which has an effect on human beings. Local concentrated heavy rainfall in urban area yields flood damage increase due to insufficient capacity of drainage system. When the excessive flood occurs in urban area, it yields huge property losses of public facilities involving roadway inundation to paralyze industrial and transportation system of the city. To prevent such flood damages in urban area, it is necessary to develop adequate inundation analysis model which can consider complicated geometry of urban area and artificial drainage system simultaneously. In this study, an urban flood analysis model adopting the unstructured computational grid was developed to simulate the urban flood characteristics such as inundation area, depth and integrated with subsurface drainage network systems. By the result, we can make use of these presented method to find a flood hazard area and to make a flodd evacuation map. The model can also establish flood-mitigation measures as a part of the decision support system for flood control authority.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

Heat Exchange Drainage Method Induced Bearing Capacity Characteristic (열유도 배수공법이 적용된 지반의 하중지지 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.159-164
    • /
    • 2017
  • This paper presents the results of an investigation into the thermo-hydromechanical response of weathered granite soil. The effect of forced change temperature and relative humidity at the soil layer boundaries were monitored during heating. A series of load settlement test were performed on layers of compacted, unsatureated weathered granite soil with geosynthetic embedded at mid height before and after application of heat exchanger to the base of the soil layers. The results from this study indicated the potential for using embedded heat exchangers for the mechanical improvement of geotechnical systems incorporating weathered granite soil.

Development of interception capacity equations according to grate inlet types (빗물받이 형상에 따른 차집량 산정식 개발)

  • Choi, Sung Yeul;Eom, Kwangho;Choi, Seungyong;Cho, Jaewoong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.851-861
    • /
    • 2016
  • Recently, natural disasters, which are hard to predict and prevent, are rapidly increasing due to climate change worldwide. Particularly the damage scale of urban areas is increasing because of local torrential rainfall. In urban areas, the rain water cannot flow to pipes well due to the high percentage of impervious areas by the indiscriminate development. As a result, the inundation damage is getting higher in urban areas. So we need to characterize the interception of the grate inlets to ensure good drainage in impervious areas. But Korean installation criteria of grate inlets does not reflect road and drainage sector characteristics so the grate inlets do not function properly in many areas. In this study, we suggest the interception capacity equations about grate inlets through hydraulic experiments in various conditions. Therefore, the interception capacity changes are analyzed according to bearing bar slopes of grate inlets, grate inlet sizes and shapes and connecting pipe numbers. Though this, we developed the interception capacity equations about domestic grate inlets.

Simulating Depositional Changes in River and It's Prediction (그래픽 모사기법을 이용한 하천 변천의 재현과 예측)

  • Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.579-592
    • /
    • 1994
  • A case study is presented where a fluvial system is modeled in three dimensions and compared to data gathered from a study of the Arkansas River. The data is unique in that it documents changes that affected a straight channel that was excavated within the river by the U.S. Army Corps of Engineers. Excavation plan maps and sequential aerial photographs show that the channel underwent massive deposition and channel migration as it returned to a more natural, meandering path. These records illustrate that stability of fluvial system can be disrupted either by catastrophic events such as floods or by subtle events such as the altering of a stream's equilibrium base level or sediment load. SEDSIM, Stanford's Sedimentary Basin Simulation Model, is modified and used to model the Arkansas River and the geologic processes that changed in response to changing hydraulic and geologic parameters resulting from the excavation of the channel. Geologic parameters such as fluid and sediment discharge, velocity, transport capacity, and sediment load are input into the model. These parameters regulate the frequency distribution and sizes of sediment grains that are eroded, transported and deposited. The experiments compare favorably with field data, recreating similar patterns of fluid flow and sedimentation. Therefore, simulations provide insight for understanding and spatial distribution of sediment bodies in fluvial deposits and the internal sedimentary structure of fluvial reservoirs. These techniques of graphic simulation can be contributed to support the development of the new design criteria compatible with natural stream processes, espacially drainage problem to minimize environmental disruption.

  • PDF

Slope stability method establish and carry out in vertical slope for tunnel excavation (터널의 굴착을 위한 수직사면의 안정대책 방안 수립 및 시행)

  • Park, Chal-Sook;Kim, Jun-Yong;Kwan, Han;Kim, Min-Jo;Choi, Yu-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.992-1006
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. Cutting-slope adjacent to outlet of spillways had been originally designed to be 63 degrees and about 65m in height. Examination is carried out in preceding construction that it is caused to some problems possibility which of machine for slope cutting couldn't approach to the site, blasting for cutting slope might have negative influence on highway and roads nearby, and fine view along the Tae-hwa river would be eliminated. In order to establish stability of tunnel and more friendly natural environment that we are carry out detailed geological surface survey and analysis of slope stability. So, we are design and construct for tunnel excavation with possible method that it is keep up natural slope. The result of survey and analysis that natural slope was divided 3 zone(A, B, C zone). In A and B zone, in first removed floating rock, high tensile tension net is install that it prevent of release and falling of rock, in order to security during under working. In addition to, pre-stressed rock anchor is install purpose of security during tunnel excavation because of fault zone near vertical developed above excavation level. Zone C is relatively good condition of ground, design is only carry out random rock bolt. All zone are designed and constructed drainage hole for groundwater and surface water is easily drain. Desinged slpoe is harmony with near natural environment. Successfully, construction is completed.

  • PDF

A Study on Adsorption of Heavy Metal Ions Using Water-soluble Chitosan Derivative (수용성 Chitosan 유도체를 이용한 중금속 이온 흡착에 관한 연구)

  • Lee, Kwang-Il;Kwak, Chun-Geun;Kim, Young-Ju;Jang, Buyng-Man;Kim, Sang-Ho;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 1996
  • Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. We have synthesized the water-soluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of water-soluble chitosan with carbon disulfide in the presence of alkali metal hydroxide. To elucidate this natural polymer capacity of adsorbing heavy metal ions, we have performed adsorption experiments using the water-soluble chitosan derivative various average molecular weight and of different percent contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from water-soluble chitosan of average molecular weight ranging $9,000{\sim}120,000$ was shown to have the highest capacity of adsorbing heavy metal ions. On the whole, adsorbing efficiency was increased as the reaction time goes longer and also increased as the reaction temperture goes higer in temperture range of $15^{\circ}C{\sim}45^{\circ}C$. The adsorption capacity at various pH, however, was appeared to vary depending on the heavy metal ions studied Judging from these finding, water-soluble N-dithiocarboxy chitosan sodium salt, a derivative of a biodegradable nature polymer, is believed to be a potential adsorbent for heavy metal ions since it not only is shown to lower the concentration of heavy metal ions to below the drainage quality standard, but also it would not cause acidification and hardening of soil which is one of the detrimental effects of synthetic macromolecular adsorbents present.

Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves (자연상태 유황곡선 보전을 위한 생태저류지 용량결정방법)

  • Lee, Okjeong;Jang, Suhyung;Kim, Hongtae;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.424-431
    • /
    • 2016
  • LID facilities like bio-retention cells is applied to manage stormwater. LID concept becomes an important part in stormwater management, and the clear understanding of hydrologic performance and hydrologic impact on the corresponding catchment has been needed. In this study, the application of flow duration curves as design strategy is investigated. Bio-retention cells like many LID facilities are installed to reproduce natural hydrologic processes. In this study, the attempt to determine the size of a bio-retention cell is carried out to satisfy the flow duration criteria. From the results, it is shown that "5 mm * the area of a target catchment" which is the current facility design capacity is valid for the drainage area with 20-30% impervious rate. In the 100% impervious catchment where LID facilities are typically installed, the design capacity to intercept stormwater of approximately 47 mm depth is required to reproduce natural flow duration curves. This means that about 11% of the target catchment area should be allocated as a bio-retention cell. However, the criteria of the design capacity and facility surface area should be set at the possible implementation conditions in reality, and site-specific hydrologic characteristics of a target catchment should be considered.

Experimental Investigation of Effects of Sediment Concentration and Bed Slope on Debris Flow Deposition in Culvert (횡단 배수로에서 토석류 퇴적에 대한 유사농도와 바닥경사 영향 실험연구)

  • Kim, Youngil;Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.467-474
    • /
    • 2011
  • Debris flow is one of the most hazardous natural processes in mountainous regions. The degradation of discharge capacity of drainage facilities due to debris flows may result in damages of properties and casualty as well as road. Understanding and accurate reproducing flow behaviour of debris flows at various conditions, such as sediment volume concentration and approaching channel and culvert slopes, are prerequisite to develop advanced design criteria for drainage facilities to prevent such damages. We carried out a series of laboratory experiments of debris flows in a rectangular channel of constant width with an abrupt change of bottom slope. The experimental flume consists of an approaching channel part with the bed slope ranging $15^{\circ}$ to $30^{\circ}$ and the test channel with slope ranging from $0^{\circ}$ to $12^{\circ}$ which mimics a typical drainage culvert. The experiments have been conducted for 22 test cases with various flow conditions of channel slopes and sediment volume concentration of debris flows to investigate those effects on the behaviour of debris flows. The results show that, according to sediment volume concentration, the depth of debris flow is approximately 50% to 150% larger than that of fresh water flow at the same flow rate. Experimental results quantitatively present that flow behaviour and deposit history of debris flows in the culvert depend on the slopes of the approaching and drainage channels and sediment volume concentration. Based on the experimental results, furthermore, a logistic model is developed to find the optimized culvert slope which prevents the debris flow from depositing in the culvert.

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.