• Title/Summary/Keyword: Natural coal

Search Result 263, Processing Time 0.026 seconds

Progress of renewable energy in India

  • Kar, Sanjay Kumar;Gopakumar, K.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.97-115
    • /
    • 2015
  • Energy holds key to economic growth and prosperity of India. Currently, India has very high-energy import dependence, especially in the case of crude oil (80%) and natural gas (40%). Even coal import has been increasing over the years. Considering India's population growth, emphasis on manufacturing, production, and service industry, energy consumption is bound to increase. More fossil energy consumption means greater dependence on energy import leading to widening trade deficit and current account deficit. Therefore, exploitation of indigenous renewable energy production is necessary. The paper reviews the progress and growth of renewable energy production, distribution, and consumption in India. The paper highlights some of the enablers of renewable energy in India. The authors discuss the opportunities and challenges of increasing share of renewable energy to reduce energy import and address issues of energy security in India. The findings suggest that India is ready for a quantum leap in renewable production by 2022.

Elasticity of substitution of renewable energy for nuclear power: Evidence from the Korean electricity industry

  • Kim, Kwangil
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1689-1695
    • /
    • 2019
  • This study suggests a simple economic model to analyze electricity grid that consists of different power sources. The substitutability of renewable energy for nuclear power in Korean electricity transmission network is investigated by suggested model. The monthly data from January 2006 to December 2013 reported by Electricity Power Statistics Information System (EPSIS) of Korea Power EXchange (KPX) are used. To estimate the elasticities of substitution among four power sources (i.e. coal, natural gas, nuclear power, and renewable energy), this paper uses the trans-log cost function model on which local concavity restrictions are imposed. The estimated Hicks-Allen and Morishima elasticity of substitution shows that renewable electricity and nuclear power are complementary. The results also evidenced that renewable electricity and fossil fueled thermal power generation are substitutes.

A Study on World Energy Outlook and the Optimal Alternatives for Energy Technology Development: Focusing on Coal Utilization Technology (에너지자원 수급 전망 분석 및 최적 기술 개발 대안에 관한 연구: 석탄활용기술 중심)

  • Lee, Seong-Kon;Kim, Jong-Wook;Yoon, Yong-Jin
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.174-180
    • /
    • 2006
  • The trend and outlook of energy supply and demand have an crucial effect on not only energy sector but also korean economy due to the rapid change of energy environments with continuous high oil price such as dubai crude oil price of above $60 a barrel. Specifically, korea is the 9th largest energy consuming nation in the world and the 97 percentages of energy import totally depends on the import of energy resources in korea. Korean economy is influenced directly by the trend and outlook of world energy on account of that. Moreover, Should korea be the annex 1 country having responsibility for reducing its greenhouse gas emissions to 1990 levels by the year 2000, in 2013, The effectuation of united nations framework convention on climate change will affect korean economy severely. In this study, we analyze the supply and demand of primary energy resources such as petroleum, coal, and natural gas. we then suggest the optimal alternatives of energy technology development that play an important part, which will be a temporary bridge, in going forward with hydrogen economy in the aspects of energy policy.

Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002 (DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.

A Biogeochemical Study on the Heavy Metal Leaching from Coal Fly Ash Disposed by Dangjin Fire Plant in the Coastal Environment (당진화력발전소의 석탄회 연안매립과 중금속 원소의 용출에 대한 생지화학적 연구)

  • Cho, Kyu-Seong;Roh, Yul;Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.112-122
    • /
    • 2007
  • It is known that coal-derived fly ashes have the unique chemical composition and mineralogical characteristics. Since iron oxides in coal fly ash are enriched with heavy metals, the subsurface media including soils, underground water, and sea water are highly likely contaminated with heavy metals when the heavy metals are leached from fly ashes by water-fly ash interactions. The purpose of this study was to investigate how indigenous bacteria affect heavy metal leaching and mineralogy in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Dangjin seashore, Korea. The average pH of ash pond seawater was 8.97 in nature. Geochemical data showed that microbial activity sharply increased after the 7th day of the 60-day course batch experiments. Compared with other samples including autoclaved and natural samples, ${SO_4}^{2-}$ was likely to decrease considerably in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data including Eh/pH, alkalinity, and major and trace elements showed that the bacteria not only immobilize metals from the ash pond by facilitating the chemical reaction with Mn, Fe, and Zn but may also be able to play an important role in sequestration of carbon dioxide by carbonate mineral precipitation.

Analysis of Price Formation Mechanism of Natural Gas in the Global Market and Business Model of ''Cheniere Energy" (Анализ механизмов формирования цен на газ на мировом рынке и бизнес-модели «Сheniere Energy»)

  • Sung, Jinsok
    • Analyses & Alternatives
    • /
    • v.5 no.2
    • /
    • pp.77-105
    • /
    • 2021
  • Natural gas consumption in Asia is growing at fast tempo because of various factors such as economic growth in the region, urbanization, coal-to-gas switch at power and industry sector. Due to geographical characteristics and lack of international pipeline connections between countries in the continent, majority of natural gas exported to Asian consumers is transported by tankers on the sea in the form of liquefied natural gas. As Asian market is the most lucrative market with the fastest demand growth, the competitions between LNG sellers for market share in Asian market are strengthening. The competitions accelerated, especially after the introduction of large volume of incremental supply into the market by new exporters from the U.S., Australia, and Russia. Cheniere Energy, the first exporter of liquefied natural gas (LNG) in the lower 48 states of U.S. has not adopted the traditional price formation mechanism and business model. Traditionally, prices of long-term LNG contracts have been indexed to the price of competing fuels, such as crude oil. The company adopted a pricing mechanism and business model based on a cost-plus system. Cheniere Energy opted for the safer and the risk-free pricing system, that annually guarantees a fixed amount of revenue to the seller. The company earns the same amount of money, regardless of natural gas price dynamics in the domestic and international market, but possibly with less revenue. However, by introducing and successfully implementing the safer and risk- free business model, Cheniere Energy, a company of a relatively smaller size in comparison with major oil and gas companies, became an example to other smaller-sized companies in the U.S. The company's business model demonstrated how to enter and operate LNG business amid increasing competitions among sellers in the U.S. and international market.

Development of Internal Dose Assessment Procedure for Workers in Industries Using Raw Materials Containing Naturally Occurring Radioactive Materials

  • Choi, Cheol Kyu;Kim, Yong Geon;Ji, Seung Woo;Koo, Boncheol;Chang, Byung Uck;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.291-300
    • /
    • 2016
  • Background: It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. Materials and Methods: The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. Results and Discussion: The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are $10Bq{\cdot}g^{-1}$ for $^{40}K$ and $1Bq{\cdot}g^{-1}$ for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups ( < 0.1 mSv, 0.1-0.3 mSv, and > 0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels ( < 0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and > 1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. Conclusion: The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

Ecological Planning and Mitigation of Deterioration Technique for Plan of Mountainous Experience Theme Park (산지형 체험테마공원 조성을 위한 환경생태계획 및 훼손저감 기법 연구)

  • Lee, Soo-Dong;Kang, Hyun-Kyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.142-163
    • /
    • 2009
  • Taebaek city is located in the mountainous plateau area therefore the major industry was coal industry. According to dramatically declining of the major industry, Taebaek city is need to alternative industry which associated with considering the geographical characteristics of natural tourism resources for increasing the local economy. On the basis of these reasons, this study can be suggested ecological planning and mitigation of deterioration technique about the these study site. That is the reserved area for mountainous experience theme park. As the results of environmental ecology assessment are following as; The natural ecosystem areas, multi-layer structure forest such as forest of Pinus densiflora, forest of Quercus mongolica and deciduous forest have a high value of nature, diversity and potential. In addition, wild bird habitats were important area as a inhabitation, breeding, feeding and hiding. Therefore, on these areas should be preserved. Also, it needs to conserve on there such as more than three types of wild bird inhabitate areas, the fringe of high biological diversity, the wetland that have got good vegetation condition and the function of amphibia, reptiles crossing. In addition, inhabitation, the waterway of wetland form that have got wide waterside width needs to conserve. In conclusion, on the basis of analysis results such as conditions of plan, environment, ecological assessments, survey informations are able to suggest the connectivity of the axis of forest and management plan. Moreover, in the part of forest restoration plan, we suggest the plan of transplant for a compensation of damaged forest by land use.

A Case Study of Decreasing Environment Pollution Caused by Energy Consumption of a Dormitory Building Which Only Using Electricity by Efficiently Simulating Applying Residential SOFC (Solid Oxide Fuel Cell)

  • Chang, Han;Lee, In-Hee
    • Architectural research
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2019
  • Recent years in Korea, some new developed buildings are only using electricity as power for heating, cooling, bathing and even cooking which means except electricity, there is no natural gas or other kinds of energy used in such kind of building. In vehicle industry area, scientists already invented electric vehicle as an environment friendly vehicle; after that, in architecture design and construction field, buildings only using electricity appeared; the curiosity of the environment impact of energy consumption by such kind of building lead me to do this research. In general, electricity is known as a clean energy resource reasoned by it is noncombustible energy resource; however, although there is no environmental pollution by using electricity, electricity generation procedure in power plant may cause huge amount of environment pollution; especially, electricity generation from combusting coal in power plant could emit enormous air pollutants to the air. In this research, the yearly amount of air pollution by energy using under traditional way in research target building that is using natural gas for heating, bathing and cooking and electricity for lighting, equipment and cooling is compared with yearly amount of air pollution by only using electricity as power in the building; result shows that building that only uses electricity emits much more air pollutants than uses electricity and natural gas together in the building. According to the amount of air pollutants comparison result between two different energy application types in the building, residential SOFC (Solid oxide fuel cell) is simulated to apply in this building for decreasing environment pollution of the building; furthermore, high load factor could lead high efficiency of SOFC, in the scenario of simulating applying SOFC in the building, SOFC is shared by two or three households in spring and autumn to increase efficiency of the SOFC. In sum, this research is trying to demonstrate electricity is a conditioned environment friendly energy resource; in the meanwhile, SOFC is simulated efficiently applying in the building only using electricity as power to decrease the large amount of air pollutants by energy using in the building. Energy consumption of the building is analyzed by calibrated commercial software Design Builder; the calibrated mathematical model of SOFC is referred from other researcher's study.

Fabrication and Characteristics of CFRC(Carbon Firber Reinforced Carbon Composites) Fabricated with Carbon Fiber and Coal Tar Pitch Matrix (석탄계 핏치를 결합재로한 탄소/탄소 복합재의 제조 및 특징)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.194-205
    • /
    • 1994
  • In this research, we attempt to fabricate an excellent CFRC(Carbon Fiber Reinforced Carbon), which has good thermal and mechanical properties, with 8H/satin woven fabric prepreg, high modulus and high strength type continuous carbon fiber and raw coal tar pitch(RCTP) matrix or THF soluble fraction(THFSP) matrix which has good graphitizability. Green bodies were fabricated with hot press molding technique and CFRC samples were made after carbonization, impregnation, recarbonization and graphitization steps. For the purpose of characterization of the physical properties, SEM, polarized light microscope, TGA were observed, and tested flexural strength, modulus and ILSS. After heat treating the THFSP matrix up to $2300^{\circ}C$, the value of $C_0$/2 was 3.380$\AA$, which is analogous to the structure of natural graphite and the value of 2$\theta$ is $26.276^{\circ}$ approached to the Bragg's angle of natural graphite. As a result of TGA to test the high temperature air oxidation, the THFSP matrix, graphitized up to $2300^{\circ}C$, exhibited the best air oxidation resistance. And mechanical properties were increased up to 65~70% as fiber volume fraction increased. Because of the good orientation graphitizability, the fracture surface of THFSP matrix CFRC is very good.

  • PDF