• 제목/요약/키워드: Natural air-conditioning

검색결과 344건 처리시간 0.027초

대체 프레온 및 자연 냉매를 이용하는 이원 냉동시스템의 성능 예측 (Prediction on Performance of Cascade Refrigeration System using Alternative Freon and Natural Refrigerants)

  • 김종열;노건상
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1427-1433
    • /
    • 2012
  • 본 연구에서는 이원냉동시스템에서 사용되던 저온용 규제프레온냉매 R13 및 고온용 규제프레온냉매 R503의 대체냉매로서 프레온혼합냉매 및 친환경적 자연냉매를 사용하는 이원냉동시스템의 성능특성을 규명하고자 하였다. 이를 위해 일반적인 이원냉동시스템의 운전범위에서 과냉각도, 과열도, 응축온도, 증발온도, 캐스케이드 열교환기에서의 온도변화를 고려하였다. 고온시스템 및 저온시스템의 작동유체의 종류에 상관없이 이원냉동시스템의 COP는 캐스케이드의 온도영향을 받고 있으며, 또한 과냉각도가 증가할수록 COP는 높아지지만, 과열도의 영향은 크게 받지 않았다. 따라서 본 연구에서 고온용 시스템 및 저온용 시스템의 작동유체로 대체 프레온혼합냉매 및 자연냉매의 냉매조합 중에서 (R23/R290), (R23/R600), (R23/R600a), (R23/R717), (R744/R404A) 냉매를 사용하는 이원냉동시스템의 COP는 저온측에 R23, 고온측에 R22를 사용하는 시스템에 비해 20 ~ 36% 높게 나타났다.

천연제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구 (A Study on the Methane Hydrate Formation Using Natural Zeolite)

  • 박성식;안웅진;김대진;전용한;김남진
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.259-264
    • /
    • 2011
  • Gas hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. $1\;m^3$ hydrate of pure methane can be decomposed to the methane gas of $172\;m^3$ and water of $0.8\;m^3$ at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store of natural gas in large quantity. Especially the transportation cost is known to be 18~25% less than the liquefied transportation. However, when methane gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and the increment of the amount of captured gas by adding zeolite into pure water. The results show that when the zeolite of 0.01 wt% was added to distilled water, the amount of captured gas during the formation of methane hydrate was about 4.5 times higher than that in distilled water, and the methane hydrate formation time decreased at the same subcooling temperature.

초저온 액화가스 기화기의 열 교환성능 비교에 관한 연구 (Study on the Comparison of Heat Exchange Performance of Liquefied Gas Vaporizer at Super Low Temperature)

  • 김필환;김철표;정효민;정한식;이용훈
    • 설비공학논문집
    • /
    • 제20권10호
    • /
    • pp.679-688
    • /
    • 2008
  • Air-heating vaporizer usually is used to regasify LNG at satellite areas because of the small demand of natural gas there. The common type of air heating vaporizer which exists in the market is the longitudinally finned type with 8 fins, 55 mm fin length and 2mm fin thickness. To contribute in developing an efficient air-heating vaporizer, experiment on finned type air-heating vaporizer using 8 fins, 50mm(fin length) with 2 mm(fin thickness) which exist in the market and 4 fins, 75 mm(fin length) with 2 mm(fin thickness), which is proposed, were conducted. Then, both types of vaporizers are compared. The experiments were conducted in one hour by varying the ambient condition and the length of the vaporizer. The ambient air was controlled so that it has the same temperature, humidity and air velocity with air condition in every season available and the length was varied 4000 mm, 6000 mm and 8000 mm for each type of vaporizer. Additional experiment with longer duration, i.e. In this experiment, the main aspects in analyzing the characteristics of the air heating vaporizer the inlet-outlet enthalpy difference and the outlet temperature of the working fluid. $LN_2$ is used to substitute LNG because of safety reason. The results show that the characteristics of the finned type 4fin75le vaporizer are comparable to finned type 8fin50le vaporizer.

설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011)

  • 한화택;이대영;김서영;최종민;백용규;김수민
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

초고층 공동주택의 이중외피 창호 유형별 실내기류 특성 비교 (Indoor Airflow of High-Rise Apartment with Different Types of Box-Windows)

  • 최태환;전미숙;이정현;김태연;이승복
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.993-998
    • /
    • 2006
  • High-rise apartments have a problem using natural ventilation because of the strong outdoor wind velocity. Conventional high-rise apartments have adopted mechanical ventilation systems to maintain the indoor air quality. However, it leads to the overuse of electricity and the sick house syndrome. Double-skin facade is the alternative for the high-rise building to use natural ventilation and this study is focused on the performance of the box-window, which is a kind of double-skin facades. Indoor wind velocity and HCHO concentrations are analyzed with three types of box-windows: the diagonal type, parallel type and perpendicular type. The airflow is simulated by computational fluid dynamics program. Box-windows reduce the maximum value of indoor wind velocity about 50% compared with the single window and the HCHO concentrations do not have the big difference. Box-windows could be the alternative to enhance the use of the natural ventilation and indoor air quality of the high-rise apartment.

  • PDF

KS, JIS 열교환 환기장치 실험규격의 민감도 분석 (Sensitivity Analysis on KS and JIS Standard for Heat Recovery Ventilator)

  • 이정재;임병찬;김환용
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.998-1004
    • /
    • 2005
  • Recently natural ventilation rate is decreased due to the airtightness of apartment building. Therefore the use of heat recovery ventilator (HRV) has been greatly increased as an alternative method to supply fresh air and save energy in the building. In this research the experiment standard of HRV is compared between KS and JIS and the sensitivity analyses are experimented by both standards. Under cooling experiment condition indoor and outdoor wet-bulb temperature difference of JIS is 2 to 3 times higher than that of KS. It shows that the efficiency measurement of HRV by KS is expected to have greater sensitivity than by JIS and thus accurate measurement of web-bulb temperature is required. The experimental results provide that the efficiency of thermal exchange is resemblance to each others between KS and JIS. Under cooling experiment condition the efficiency of humidity exchange by KS presents higher than by JIS, however, under heating experiment condition the efficiency by KS shows lower than by JIS, reversely.

제한공간내 펄스가열에 기인한 열음향파의 전달특성에 관한 수치적 연구 (A Numerical Study on the Transmission of Thermo-Acoustic Wave Induced by Step Pulsed Heating in an Enclosure)

  • 황인주;김윤제
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.914-922
    • /
    • 2002
  • Thermo-acoustic waves can be thermally generated in a compressible flow field by rapid heating and cooling, and chemical reaction near the boundary walls. This mechanism is very important in the space environment in which natural convection does not exist. Also this may be a significant factor for heat transfer when the fluids are close to the thermodynamic critical point. In this study, the generation and transmission characteristics of thermo-acoustic waves in an air-filled confined domain with two-step pulsed heating are studied numerically. The governing equations are discretized using control volume method, and are solved using PISO algorithm and second-order upwind scheme. For the purpose of stable solution, time step was set to the order of $1\times10_-9s,\;and\;grids\;are\;50\times2000$. Results show that temperature and pressure distributions of fluid near the boundary wall subjected to a rapid heating are increased abruptly, and the induced thermo-acoustic wave propagates through the fluid until it decays due to viscous and heat dissipation. Pressure waves have sharp front shape and decay with a long tail in the case of step heating, but these waves have sharp pin shape in the case of pulsed heating.

패시브환기외피의 통기 및 열성능에 관한 실험적 연구 (An Experimental Study on Ventilation and Thermal Performance of Passive Ventilation Building Envelopes)

  • 윤성환;이태철;강정식
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.711-717
    • /
    • 2011
  • In this study, 5 types of PVS(Passive ventilation system) units are made and experimented its ventilation performance, thermal performance according to open rate and hole diameter of perforated aluminum plane. Results are as follows. 1) The ventilation performance increases approximately 50~70% according by the open rate of PVS increasing. Also, the ventilation performance increases about 2%~12% according by the hole diameter of PVS increasing. 2) In winter temperature/pressure condition(in : $20^{\circ}C$, out : $-2^{\circ}C/{\Delta}P$ : 0.2~5.0Pa) the temperature of inflow air decreases according by the open rate of PVS increasing. Heat gain performance decreases 10.1%, 25.6% when open rate increases 3) In the same condition, Heat gain performance decreases 18.3%, 18.8% according by the hole diameter of PVS increasing.

비정상 자연대류에 의한 온도성층화의 동특성에 관한 연구 (Dynamic Characteristics of Thermal Stratification Build-up by Unsteady Natural Convection)

  • 강보선;이준식;이택식;노승탁
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.382-394
    • /
    • 1988
  • Dynamic characteristics of thermally-forced stratification process in a square enclosure with a linear temperature profile at the side walls have been investigated through flow visualization experiment and numerical analysis. The experiment was performed on air with the Rayleigh numbers of order $10^5$. A particle tracer method is used for the flow visualization and to obtain a sudden linear temperature profile at the side walls copper blocks which already have a linear temperature profile are come into contact with the thin copper plates of the test section. Immediately a meridional circulation is developed and heat transfer takes place from the wall to the interior region by circulation of fluid and finally a thermal stratification is achieved. In the numerical study, QUICK scheme for convective terms, SIMPLE algorithm for pressure correction, and the implicit method for the time marching are adopted for the integration of conservation equations. Comparison of flow visualization and numerical results shows that the developing flow patterns are very similar in dynamic nature even though there is a time lag due to the inevitable time delay in setting up a linear temperature profile. For high Rayleigh numbers, the oscillatory motion is likely to take place and stratified region is extended. However, initial temperature adjustment process is much slower than that for low Rayleigh numbers.

  • PDF

도로터널 환기시스템 개발연구 (Development of Vehicle Tunnel Ventilation System)

  • 이창우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF