• Title/Summary/Keyword: Natural aggregate

Search Result 539, Processing Time 0.02 seconds

Effects of the Different Substrates on the Plant Growth and Mineral Contents of Hydroponically Grown Plantago asiatica in Aggregate Culture (배지종류가 추식 수경재배 질경이의 생장과 무기성분 함량에 미치는 영향)

  • Cho, Ja-Yong;Kim, Hong-Gi;Yu, Sung-Oh;Yang, Seung-Yul;Yang, Won-Mo;Kim, Byoung-Woo;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • This study was conducted to clarify the effects of the different substrates in terms of perlite (100%), peat moss (100%), granular rock wool (100%) and mixing perlite (50%) with peat moss (50%) on the growth responses and mineral contents of hydroponically grown Plantago asiatic in aggregate culture. Overall early plant growth such as plant height, stem diameter, number of leaves, root length, fresh and dry weight of shoot and root were increased in the order of that miked perlite and peat moss (50%:50%, v/v)>peat moss (100%)>granular rock wool (100%)>perlite (100%). Ca and Mg contents in plants became highest in the plants grown in the peat moss, however, Mg and Na in the granular rock wool. $P_2O_5$ content in plants were most increased in proportion to the plant growth increment in the peat moss (100%) and the mixing substrates of perlite and peat moss (50:50, v/v).

Properties of No-coarse Lightweight Concrete Using Synthetic Lightweight Fine Aggregate (인공경량세골재(人工輕量細骨材)를 사용(使用)한 무조골재(無粗骨材) 경량(輕量)콘크리트의 특성(特性))

  • Min, Jeong Ki;Kim, Seong Wan;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.194-206
    • /
    • 1997
  • This paper was performed to evaluate the properties of no-coarse lightweight concrete using perlite and expanded polystyrene bead on fine aggregate. The results were shown that w/c and unit weight was affected by absorption ratio and unit weight of using aggregate itself. The compressive strength of no-coarse lightweight concrete was showed $187kgf/cm^2$ by using natural sand, $170kgf/cm^2$ by using perlite. Tensile and bending strength were showed the same tendency of compressive strength, but when expanded polystyrene bead concrete dose not have strength nearly. The pulse velocity and static modulus of elasticity of no-coarse lightweight concrete were smaller than that of normal cement concrete. And stress-strain curves were shown that was increased with increase of stress, and when the stress-strain curve using expanded polystyrene bead was repeated at short intervals increase and decrease irregularly.

  • PDF

Evaluation of Compaction and Thermal Characteristics of Recycled Aggregates for Backfilling Power Transmission Pipeline (송배전관로 되메움재로 활용하기 위한 국내 순환골재의 다짐 및 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Park, Sang-Woo;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.17-33
    • /
    • 2011
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been considered due to the issues of eco-friendly construction and a lack of natural aggregate resource. It is important to identify the physical and thermal properties of domestic recycled aggregates that can be used as a backfill material. This paper evaluated thermal properties of concrete-based recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregates and river sand provided by local vendors were measured using the transient hot wire method and the transient needle probe method after performing the standard compaction test. The needle probe method considerably overestimated the thermal resistivity of recycled aggregates especially at the dry of optimum water content because of experiencing disturbance while the needle probe is being inserted into the specimen. Similar to silica sand, the thermal resistivity of recycled aggregates decreased when the water content increased at a given dry density. Also, this paper evaluated some of the existing prediction models for the thermal resistivity of recycled aggregates with the experimental data, and developed a new prediction model for recycled aggregates. This study shows that recycled aggregates can be a promising backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

Characteristics of Eco-friendly Porous Concrete for Seawater Purification Using By-Products of Steel Industry (철강산업 부산물을 활용한 해수정화용 친환경 다공질콘크리트의 특성)

  • Han, Woonwoo;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • As of 2018, Steel slag was generated approximately 24.23 million tons. Howeve, except blast furnace slag, steel slag is a typical by-product which does not have a clearly defined purpose in recycling. Thus, countries around the world are putting great efforts into developing a purpose for the recycling of steel slag. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of seawater purification were in this study. Regarding the nutrient elution properties, it was clear that the nutrients continuously flowed out up to an immersion time by 8 months in natural seawater; the nitrogenous fertilizer displayed excellent elution properties in this regard.

Investigation of Membrane Fouling in Microfiltration by Characterization of Flocculent Aggregates (응집플록의 특성분석을 통하여 관찰된 정밀여과 막오염 현상에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.337-344
    • /
    • 2006
  • Characteristics of flocculent aggregates have great effects on membrane fouling. Floc from kaolin particles gave higher permeate throughputs than floc from natural particles at the same conditions. Therefore, the objectives of this study are to thoroughly analyze characteristics of flocculated aggregates and to investigate effects of flocculated aggregates on membrane fouling. Image analysis, specific rake resistance and cake compressibility were used for characterization of flocs. Different flocculent aggregates formed with natural and kaolin particles were employed in this study. The fractal dimensions from the image analysis were $D_2=1.79{\pm}0.07$ for floc from natural particles and $D_2=1.84{\pm}0.06$ for floc from kaolin particles. The lower fractal dimension($D_2$) of floc from natural particles indicated that the aggregates were more porous and less compact than floe from kaolin particles. In addition, both the specific cake resistances and compressible degrees of flocs from natural particles showed greater values than those of flocs from kaolin particles. The results implied that the porous and loose flocs from natural particles were more easily compressed on membrane surface than the dense and compact flocs from kaolin particles. The compressed flocs yielded the great hydraulic resistances by hindering the water flow through the cake layer.

Effect of Ferro-nickel Slag on Contamination of Soil and Water (페로니켈슬래그(FNS)가 토질 및 수질오염에 미치는 영향)

  • Park, Kyungho;Kim, Daehyeon;Kim, Byungho;Go, Youngjin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.21-33
    • /
    • 2013
  • The purpose of the study is to evaluate engineering properties of Ferro Nickel Slag (FNS) and to investigate the effects of FNS on potential contamination of surrounding soil and water through small and large chamber tests. Soil conditions in the chamber tests were made as closely as possibile to the field conditions. In order to simulate different types of water, we used fresh water, acidic water and seawater. Sand soils were made with relative densities of 40% and 60%, and clay with the degree of compaction of 90%. After flushing water through the FNS in the chambers was completed, the PH test was performed for the water flowing out of the chambers and the soil samples were collected for soil pollution analysis. Based on the results of the chamber tests, although the pollution level was slightly higher in the silt than in the sand, the environmental effect that FNS causes the surrounding soil was found to be very minimal. This indicates that FNS can be used as construction material in place of natural aggregates.

The Effect of Salt and Organic Solvents on the Interaction of Thionin-Sodium Dodecyl Sulfate System (Thionin-Sodium Dodecyl Sulfate계의 상호작용에 있어서 염 및 유기용매의 첨가효과에 관한 연구)

  • Kim, Sung-Hyun;Song, Ki-Dong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.779-785
    • /
    • 1994
  • The interaction between the cationic dye, thionin(Th) and the anionic surfactant, sodium dodecyl sulfate (SDS) has been investigated by absorption spectra. As the temperature of surfactant solution was increased in premicellar range(S/D=10, 80, and 160) which was much lower than the critical micelle concentration(CMC), the increment or decrement of the molar extinction coeffecient ratio appeared. It was found that the most stable temperature range of the oligomer aggregate in Th-SDS system at S/D=160 was below $60^{\circ}C$. With increasing the concentration of inorganic salt and organic solvents in Th-SDS system, ${\alpha}$-band was increased, but ${\gamma}$=band or J-band was decreased. The orders of ${\alpha}$-band increasing power were $Cl^-$>$ClO{_4}{^-}$>$SO{_4}{^{2-}}$>$NO{_3}{^-}$ and 2-propanol>ethanol>methanol>ethylene glycol.

  • PDF

Structural characterization of calmodulin like domain of ryanodine receptor type 1

  • Song, Yonghyun;Kang, Sunmi;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Ryanodine receptor (RyR) is one of the two major $Ca^{2+}$ channels in membranes of intracellular $Ca^{2+}$ stores and is found in sarcoplasmic reticulum (SR), endoplasmic reticulum (ER). RyR1 is also the major calmodulin-binding protein of sarcoplasmic reticulum membranes. Residues 4064-4210 in the RyR1 polypeptide chain has similar primary sequence with calmodulin (CaM) and was designated as CaM-like domain (CaMLD). When expressed as a recombinant peptide, CaMLD showed several CaM-like properties in previous studies. Still, previous studies of CaMLD were focused on protein-protein interactions rather than its own properties. Here, we studied the expression of CaMLD and its sub-domains corresponding to each lobe of CaM in Escherichia coli. CaMLD could be obtained only as inclusion body, and it was refolded using urea solubilization followed by dialysis. Using spectroscopic approaches, such as NMR, circular dichroism, and gel filtration experiment, we found that the refolded CaMLD exists as nonspecific aggregate, even though it has alpha helical secondary structure. In comparison, the first half of CaMLD (R4061-4141) could be obtained as natively soluble protein with thioredoxin fusion. After the removal of the fusion tag, it exhibited folded and helical properties as shown by NMR and circular dichroism experiments. Its oligomeric status was different from CaMLD, existing as dimeric form in solution. However, the second half of the protein could not be obtained as soluble protein regardless of fusion tag. Based on these results, we believe that CaMLD, although similar to CaM in sequence, has quite different physicochemical properties and that the second half of the protein renders it the aggregative properties.

Experimental Study on Mechanical Properties and Deformation Behavior of Concrete with Recycled Aggregates and Steel Fiber (순환골재 및 강섬유를 혼입한 콘크리트의 역학적 특성 및 변형 거동에 관한 실험적 연구)

  • Lee, Hyun-Ho;Lee, Tae-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.357-363
    • /
    • 2016
  • To solve the exhaustion problem of natural aggregate which were create the high value in construction and environmental industry, recycled aggregates have considerable benefits than other materials. However, even though many researches have been conducted with recycled aggregates, building structures with recycled aggregated are rarely constructed because it has lower quality than natural aggregates have. In this study, mechanical and strain properties of recycled aggregates concrete containing steel fibers have been reviewed in order to complement performance of recycled aggregates concrete. As results, recycled aggregates concrete showed lower compressive strength and elastic modulus than plain concrete. But, recycled aggregates concrete containing steel fibers showed equivalent performance with plain concrete. In review of drying shrinkage and creep coefficient, recycled aggregates concrete containing steel fibers showed similar behavior with plain concrete in the range of 0.5 Vol.% fiber content rate by internal restraint effect, moisture transport restraint effect and strength enhancement effect of steel fiber. Therefore, it is considered that mixing steel fibers with concrete is the effective method as a active application plan for recycled aggregates.

Characteristics of Natural Hydraulic Lime Mortar Mixed with Basalt Fiber (바잘트 섬유를 혼합한 천연수경성석회 모르타르의 특성)

  • Moon, Ki-Yeon;Cho, Jin-Sang;Cho, Kye-Hong;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.61-68
    • /
    • 2015
  • In this study, the strength properties of NHL based mortar with blending basalt fiber were investigated. In the first step, it was evaluated that physical properties of NHL based mortar according to mixing method of four types of basalt fiber and then mixing method of one type was selected. As a result of assessment, it showed that the physical properties with mixing method of dry blending were better than that of wet blending and mixing method that basalt fiber pre-mixed with NHL for 5 min in a blender was selected and water and aggregate were finally added. Secondly, the investigation of blending fiber length on the compressive and flexural strength for basalt fiber reinforced NHL based mortars was carried out. The compressive strength was decreased with adding fiber, and the flexural strength was increased more than plain mortar. In the case of adding 6 mm fiber, the compressive and flexural strength were improved more than that of others.