• Title/Summary/Keyword: Natural Vibration analysis

Search Result 1,932, Processing Time 0.028 seconds

Vibration Analysis of Rotating Structures Employing Multi-reference Frames (다중 기준틀을 사용한 회전 구조물의 진동해석)

  • 김정민;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.983-989
    • /
    • 2004
  • In this paper, a modeling method for the vibration analysis of rotating structures employing multi-reference frames is presented. The geometric stiffening effect that results from centrifugal inertia force is considered. In most previous studies single reference frame has been employed for the analysis. In the present study, a modeling method employing multi-reference frames is presented, and the effects of employing multi-reference frames on the analysis accuracy are investigated through solving numerical examples.

Free Vibration Analysis of the Cantilevered Circular Cylindrical Shells Combined with Circular Plates at Axial Positions (원판이 결합된 외팔 원통셸의 고유진동 특성)

  • 임정식;이영신;손동성
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.331-345
    • /
    • 1997
  • A theoretical formulation for the analysis of free vibration of clamped-free cylindrical shells with plates attached at arbitrary axial position(s) was completed and it was programed to get the numerical results which yield natural frequencies and mode shape of the combined system of the plate and the shells. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis. The results shows good agreement with those of ANSYS and test results in frequencies and mode shapes. The method developed herein is likely to be used for the analysis of the free vibration of the clamped-free circular cylindrical shells with any kinds of lids such as hollow circular plates, conical shells, spherical shells, or semi-spherical shells.

  • PDF

Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.763-774
    • /
    • 2014
  • A simple and efficient vibration analysis procedure for stiffened panels with openings and arbitrary boundary conditions based on the assumed mode method is presented. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion, where Mindlin theory is applied for plate and Timoshenko beam theory for stiffeners. The effect of stiffeners on vibration response is taken into account by adding their strain and kinetic energies to the corresponding plate energies whereas the strain and kinetic energies of openings are subtracted from the plate energies. Different stiffened panels with various opening shapes and dispositions for several combinations of boundary conditions are analyzed and the results show good agreement with those obtained by the finite element analysis. Hence, the proposed procedure is especially appropriate for use in the preliminary design stage of stiffened panels with openings.

Free Vibration Analysis of Thick Plates on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓여진 후판의 자유진동해석)

  • 김일중;오숙경;이효진;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.852-857
    • /
    • 2003
  • This paper has the object of investigating natural frequencies of thick plates on inhomogeneous Pasternak foundation by means of finite element method and providing kinematic design data lot mat of building structures. This analysis was applied for design of substructure on elastic foundation. Mat of building structure may be consisdered as a thick plate on elastic foundation. Recently, as size of building structure becomes larger, mat area of building structure also tend to become target and building structure is supported on inhomogeneous foundation. In this paper, vibration analysis or rectangular thick plate is done by use or serendipity finite element with 8 nodes by considering shearing strain of plate. The solutions of this paper are compared with existing solutions and finite element solutions with 4${\times}$4 meshes of this analysis are shown the error of maximum 0.083% about the existing solutions. It is shown that natrural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter.

  • PDF

A Hybrid Method for Vibration Analysis of Rotor Systems (회전축계의 진동해석을 위한 Hybrid법에 관한 연구)

  • 양보석;최원호
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.265-272
    • /
    • 1992
  • The simplest method which has been used extensively for vibration analysis is the transfer matrix method introduced by Myklestad and was later extended by many researchers. The crude approximation results in considerable error on the predicted natural frequencies and to increase the accuracy the number of elements used in the analysis must be increased. In addition, numerical instability can occur as a result of matrix multiplication. Also the main disadvantage of the finite element method is the large computer memory requirements for complex systems. The new method proposed in this paper combines the transfer matrix and finite dynamic element techniques to form a powerful algorithm for vibration analysis of rotor system. It is shown that the accuracy improves significantly when the transfer matrix for each segment is obtained from finite dynamic element techniques.

  • PDF

Vibration Analysis of Steam Turbine-Generator Rotor System Using Component Mode Synthesis Method (구분모드합성법을 이용한 증기터빈$\cdot$발전기축계의 진동해석)

  • Yang, B.S.;Kim, Y.H.;Choi, B.G.;Lee, H.
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.401-408
    • /
    • 1999
  • A method is presented for the vibration analysis of steam turbine-generator rotor system based on the component mode synthesis method. The motion of each component of the system is described by superposing constraint mode associated with boundary coordinates and constrained normal modes associated with internal coordinates. This method using real fixed-interface modes allows for significant reduction in system model size while retaining the essential dynamic characteristics of the lower modes. The capability of this method is demonstrated in the natural frequency and unbalance response analysis of the steam turbine-generator rotor system in which the dynamics of the pedestal is considered. The results by the present method are compared with finite element method and trnasfer matrix method in terms of the accuracy and computing time.

  • PDF

A Study on the Vibration Characteristics of Laminated Composite Materials Rectangular Plates (적층 복합재료 사각판의 진동특성에 관한 연구)

  • 허동현;신귀수;정인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.486-490
    • /
    • 1997
  • Composite materials have varios complicated characteristics to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. This study presents the experimental and FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtined is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

TUNING Fork Analysis and Design by FEM AND BEM (FEM과 BEM을 사용한 소리굽쇠 특성 해석 및 설계)

  • Jarng, Soon-Suck;Kwon, You-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1201-1204
    • /
    • 2003
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method(FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the trend of the change of the modal frequencies was examined with the variation of the tuning fork length and width. An formula for the natural frequencies-tuning fork length relationship were derived from the numerical analysis results. Finally the BEM was used fur the sound pressure field calculation from the structural displacement data.

  • PDF

Application of Back Analysis Technique Based on Direct Search Method to Estimate Tension of Suspension Bridge Hanger Cable (현수교 행어케이블의 장력 추정을 위한 직접탐색법 기반의 역해석 기법의 적용 )

  • Jin-Soo Kim;Jae-Bong Park;Kwang-Rim Park;Dong-Uk Park;Sung-Wan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.120-129
    • /
    • 2023
  • Hanger cable tension is a major response that can determine the integrity and safety of suspension bridges. In general, the vibration method is used to estimate hanger cable tension on operational suspension bridges. It measures natural frequencies from hanger cables and indirectly estimates tension using the geometry conditions of the hanger cables. This study estimated the hanger cable tension of the Palyeong Bridge using a vision-based system. The vision-based system used digital camcorders and tripods considering the convenience and economic efficiency of measurement. Measuring the natural frequencies for high-order modes required for the vibration method is difficult because the hanger cable response measured using the vision-based system is displacement-based. Therefore, this study proposed a back analysis technique for estimating tension using the natural frequencies of low-order modes. Optimization for the back analysis technique was performed by defining the difference between the natural frequencies of hanger cables measured in the field and those calculated using finite element analysis as the objective function. The direct search method that does not require the partial derivatives of the objective function was applied as the optimization method. The reliability and accuracy of the back analysis technique were verified by comparing the tension calculated using the method with that estimated using the vibration method. Tension was accurately estimated using the natural frequencies of low-order modes by applying the back analysis technique.

Free Vibration Analysis of Stiffened Tapered Thick Plates with Concentrated Masses (집중질량을 갖는 변단면 보강 후판의 자유진동해석)

  • Lee, Yong-Soo;Kim, Il-Jung;Oh, Soog-Kyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.828-837
    • /
    • 2009
  • Recently, as high-rise buildings increase steeply, sub-structures of them are often supported on elastic foundation(in a case of pasternak foundation or winkler foundation). And there are many machines in sub-structures of buildings and slabs of sub-structures are affected by vibration which they make. This paper deals with vibration of plates on elastic foundation. Machines on plates are considered as concentrated mass. This paper has the object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Free vibration analysis that tapered thick plate with Concentrated Masses in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on pasternak foundation. The Winkler parameter is varied with 10, $10^2$, $10^3$ and the shear foundation parameter is 5, 10. This paper is analyzed varying thickness by taper ratio. The taper ratio is applied as 0.0, 0.25, 0.5, 0.75, 1.0. And the Concentrated Mass is applied as P1, Pc, P2 respectively.