• Title/Summary/Keyword: Natural Vibration analysis

Search Result 1,931, Processing Time 0.023 seconds

Instrumentation and Structural Health Monitoring of Bridges (교량구조물의 헬스모니터 링을 위한 진동계측)

  • 김두기;김종인;김두훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.108-122
    • /
    • 2001
  • As bridge design is advancing toward the performance-based design. it becomes increasingly important to monitor and re-evaluate the long-term structural performance of bridges. Such information is essential in developing performance criteria for design. In this research. sensor systems for long-term structural performance monitoring have been installed on two highway bridges. Pre1iminary vibration measurement and data analysis have been performed on these instrumented bridges. On one bridge, ambient vibration data have been collected. based on which natural frequencies and mode shapes have been extracted using various methods and compared with those obtained by the preliminary finite element analysis. On the other bridge, braking and bumping vibration tests have been carried out using a water truck In addition to ambient vibration tests. Natural frequencies and mode shapes have been derived and the results by the breaking and bumping vibration tests have been compared. For the development of a three dimensional baseline finite element model, the new methodology using a neural network is proposed. The proposed one have been verified and applied to develop the baseline model of the bridge.

  • PDF

Bending Vibration Analysis of Width Tapered Beams with Concentrated Tip Mass (집중 질량을 갖는 폭 변단면 외팔보의 굽힘 진동 해석)

  • Lee, Jung Woo;Kwak, Jong Hoon;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.822-829
    • /
    • 2015
  • A transfer matrix method has been developed to determine the more accurate natural frequencies for the bending vibration of Bernoulli-Euler beam with linearly reduced width and a concentrated tip mass. The proposed method can be computed an infinite number of the natural frequencies using a single element. Using the differential equation, shear force, and bending moment in which can be deduced by the diverse variational principles, a transfer matrix is formulated. The roots of the differential equation are computed by the Frobenius method. The effect of the concentrated mass for the natural frequencies of width-tapered beams is examined through a parametric study, and to show the accuracy of the proposed method, the computed results compared with those obtained from commercial finite element analysis program(ANSYS).

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.

The Effect of Added Mass of Water and Breath Mode in Fluid-Structure Coupled Vibration Analysis (부가질량 효과와 호흡모드를 고려한 구조-유체연성진동해석)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.71-76
    • /
    • 2005
  • Marine structures are often in contact with inner or outer fluid as stern, ballast and oil tanks. The effect of interaction between fluid and structure has to be taken into consideration when we estimate the dynamic response of the structure appropriately. Fatigue damages can also be sometimes observed in these tanks which seem to be caused by resonance. Thin walled tank structures in ships which are in contact with water and located near engine or propeller where vibration characteristics are strongly affected by the added mass of containing water. Therefore it is essentially important to estimate the added mass effect to predict vibration characteristics of tank structures. But it is difficult to estimate exactly the magnitude of the added mass because this is a fluid-structure interaction problem and is affected by the free surface, vibration modes of structural panels and the depth of water. I have developed a numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present study, the effect of added mass of containing water, the effect of structural constraint between panels on the vibration characteristics are investigated numerically and discussed. Especially a natural frequencies by the fluid interaction between 2 panels and a breath mode of the water tank are focused on.

  • PDF

Vibration Characteristics of Rotating Disks with Aerodynamic Effect (II) - Experimental Verifications - (공기 유동 효과를 고려한 회전 디스크의 진동 특성 (II) - 실험적 검증 -)

  • Lim, Hyo-Suk;Yim, Vit;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of rotating disks are investigated in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments performed using a vacuum chamber and ASMO/DVD disks rotating in vacuum, open and enclosure in several gaps with stationary wall give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

In-plane Free Vibration Analysis of Parabolic Arches with Hollow Section (중공단면을 갖는 포물선형 아치의 면내 자유진동 해석)

  • Lee, Tae-Eun;Lee, Byoung-Koo;Lee, Jae-Young;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-223
    • /
    • 2008
  • The differential equations governing free vibrations of the elastic arches with hollow section are derived in polar coordinates, in which the effect of rotatory inertia is included. Natural frequencies is computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and reference are made to validate theories and numerical methods developed herein. The lowest four natural frequency parameters are reported, with the rotatory inertia, as functions of three non-dimensional system parameters: the breadth ratio, the thickness ratio and the rise to span length ratio.

Modal Analysis and Testing of a High Head Pump/Turbine Runner (고낙차 수력 펌프/터빈 런너에 대한 진동 모드해석 및 실험)

  • 류석주;하현천
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1062-1068
    • /
    • 1998
  • This paper describes the vibration characteristics of a high head pump-turbine runner. with nine blades and an outer diameter of 4.410 mm. of the pumped storage power plant. Mode shapes and natural frequencies were obtained by means of both the finite element analysis and modal testing. both in air and in water. The natural frequencies in air were calculated using the finite element method by ANSYS software. In order to confirm calculation results. the natural frequencies and mode shapes of the runner were measured using a hydraulic exciter both in air and in water. Natural frequencies of the pump-turbine runner were found at 174. 310 Hz in air, and at 107. 184 Hz in water. The first mode shape is flat plate mode with two nodal diameter and the second one is also flat plate mode with three nodal diameter. It can be shown that the natural frequencies of the pump-turbine runner in water is reduced approximately 40 % due to additional mass effect. Natural frequencies in air predicted by ANSYS software are in good agreement with test results.

  • PDF

Static and Dynamic Analysis of Automotive Steering System (자동차 조향 장치의 정적 및 동적 응력해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.36-40
    • /
    • 2008
  • This study is analyzed by the simulation of automotive steering system. The maximum equivalent stress of $2.2418{\times}109Pa$ and the maximum total displacement of 0.014929m are shown at the universal joint and its lower part respectively. As the minimum cycle of 34.047 is shown at the universal joint in case of fatigue analysis, it is possible to have greatest damage at this part. In case of natural frequency analysis at vibration, its frequency of 47 to 59Hz is occurred generally. The maximum total displacement of 0.5m is shown at handle on the natural frequency of 57 to 58Hz. And the displacement over 2m is shown at the lower part of universal joint on the natural frequency of 58 to 59Hz. As the basis of the simulation analysis of steering system, passenger's comfort of car body can be improved in the design of practical part and the design effect necessary to safe driving can be promoted.

  • PDF

A Study on the Analysis of Lateral Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 횡진동 해석에 관한 연구)

  • Son, Seon-Tae;Kil, Byung-Lea;Cho, Kwon-Hae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.241-249
    • /
    • 2008
  • In this study, lateral vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including air propeller, aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis included the lateral natural frequencies, mode shapes and harmonic analysis of the shafting system taking into account three-dimensional models for propulsion and lifting shaft system. In case of ACV the yawing and pitching rate of craft will be quite high. During yawing and pitching of craft significant gyroscopic moment will be applied to the shafting and will generate high amplitude of lateral vibration. So, such a shafting system has very intricate lateral vibrating characteristics and natural frequencies of shafting must be avoided in the range of operating revolution. The control of lateral vibration is included in this study.