• Title/Summary/Keyword: Natural Sulforaphane

Search Result 13, Processing Time 0.025 seconds

Enhancement of Immune Activities of Natural Water-Soluble Sulforaphane by Nano Encapsulation Process (천연 수용성 설포라판의 나노입자화를 통한 면역 활성 증진)

  • Ha, Ji-Hye;Han, Jae-Gun;Jeong, Hyang-Suk;Oh, Sung-Ho;Kwon, Min-Chul;Choi, Young-Beom;Ko, Jung-Rim;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.402-408
    • /
    • 2008
  • This study was performed to investigate improving immune activities of natural water-soluble sulforaphane extracted from Brassica oleracea var. italica by nano encapsulation process. The nanoparticles of the sulforaphane extracted with ultrasonification process at $60^{\circ}C$ promoted human B and T cell growth, about $7{\sim}35%$ compared to the control. The secretion of IL-6 and TNF-${\alpha}$ from T cells were also enhanced as $2.6{\times}10^{-4}pg/cell$ and $2.1{\times}10^{-4} pg/cell$, respectively, by the adding nano samples. NK cell activation was improved about 8%, compare to the control in adding cultured medium of T cell added nano samples. It was also found that sulforaphane extracted from B. oleracea var. italica had highly inhibitory activity on hyaluronidase as $IC_{50}$ about $200\;{\mu}g/m{\ell}$. It can be concluded that natural water-soluble sulforaphane samples by nano-encapsulation, each size is 200 nm, extracted from B. oleracea var. italica has high immune activities through higher efficiency of bio-activation than conventional extracts.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma

  • Park, Jun-Ho;Kim, Jong-Won;Lee, Chang-Min;Kim, Yeong-Dae;Chung, Sung-Woon;Jung, In-Duk;Noh, Kyung-Tae;Park, Jin-Wook;Heo, Deok-Rim;Shin, Yong-Kyoo;Seo, Jong-Keun;Park, Yeong-Min
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.311-316
    • /
    • 2012
  • Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane), belonging to a family of natural compounds that are abundant in broccoli, has received significant therapeutic interest in recent years. However, the molecular basis of its effects remains to be elucidated. In this study, we attempt to determine whether sulforaphane regulates the inflammatory response in an ovalbumin (OVA)-induced murine asthma model. Mice were sensitized with OVA, treated with sulforaphane, and then challenged with OVA. Sulforaphane administration significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Additionally, sulforaphane suppressed the increase in the levels of SOCS-3 and GATA-3 and IL-4 expression in the OVA-challenged mice. Collectively, our results demonstrate that sulforaphane regulates Th2 immune responses. This sutdy provides novel insights into the regulatory role of sulforaphane in allergen-induced Th2 inflammation and airway responses, which indicates its therapeutic potential for asthma and other allergic diseases.

Sulforaphane-Induced Apoptosis was Regulated by p53 and Caspase-3 Dependent Pathway in Human Chondrosarcoma, HTB-94 (Sulforaphane에 의한 p53 및 caspase-3 의존 신호전달계를 통한 인간 연골암 세포주 HTB-94에서의 세포사멸 기전 연구)

  • Lee, Won-Kil;Kim, Song-Ja
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.851-857
    • /
    • 2011
  • Sulforaphane (SFN) is an isothiocyanate, isolated from glucoraphanin in broccoli and other cruciferaous vegetables. Recent studies have revealed that SFN induces anti-proliferation and apoptosis by cell cycle arrest in various cancer cells. In this study, we investigated the effect of SFN induced apoptosis in chondrosarcoma HTB-94 cells. SFN caused suppression of proliferation and apoptosis in a dose-dependent manner as determined by cell phenotype, MTT assay and FACS analysis in HTB-94 cells. Treatment of SFN led to caspase-3 activation and p53 accumulation as determined by Western blot analysis. Also, SFN significantly induced DNA fragmentation and nuclear degradation though activation of caspase-3, as detected by DNA electrophoresis and immunostaining, respectively. Our results indicate that SFN-induced apoptosis was regulated by p53 and caspase-3 dependent pathways. Furthermore, SFN may act as a potent anti-proliferation agent, and as a promising candidate for molecular-targeting chemotherapy against human chondrosarcoma cells.

Comparison of the Antioxidant Effects of Diallyl Sulfide, Capsaicin, Gingerol and Sulforaphane in $H_2O_2$-Stressed HepG2 Cells (산화스트레스가 유도된 인체 간암세포 (HepG2)에서 Sulforaphane과 Diallyl Sulfide, Capsaicin, Gingerol의 항산화효과 비교연구)

  • Lee, So-Youn;Wi, Hae-Ri;Lee, Myoung-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.488-497
    • /
    • 2011
  • Oxygen is necessary to sustain life, yet cellular oxygen metabolism creates destructive elements called free radicals. Free radicals are chemically unbalanced and carrying free electrons that can damage molecules, potentially damaging the cell itself. For this reason, many antioxidant products, including supplements and functional foods, are being developed. In particular, natural products are rich sources of pharmacologically active compounds. The purpose of this study was to investigate the antioxidant effects of target biomaterials in Korean traditional spices such as diallyl sulfide (DAS), capsaicin (CAP), and gingerol (GGR), and to investigate the response of the antioxidant defense system to oxidative stress by hydrogen peroxide ($H_2O_2$) compared to sulforaphane (SFN) in HepG2 cells. After the analysis of the cell viability using Cell Counting kit-8 (CCK-8) assay, we determined that the optimum levels were $200{\mu}M$ DAS, $25{\mu}M$ CAP, $50{\mu}M$ GGR, and $12.5{\mu}M$ SFN. Antioxidant enzymes were measured and protein expression was detected by Western blotting. All treatments showed a significant decrease in antioxidant enzyme activity such as superoxide dismutase, catalse, and glutathione peroxidase in HepG2 cells. Additionally, DAS, CAP, GGR and SFN increased the antioxidant system-related transcription factor Nrf2 which was found to be regulated by the activation of MAPK-JNK in this study. In conclusion, these results indicate the protective effects of DAS CAP, GGR, and SFN against $H_2O_2$-induced oxidative stress.

Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine

  • Hussain, Arif;Mohsin, Javeria;Prabhu, Sathyen Alwin;Begum, Salema;Nusri, Qurrat El-Ain;Harish, Geetganga;Javed, Elham;Khan, Munawwar Ali;Sharma, Chhavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5855-5860
    • /
    • 2013
  • Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI)<1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.

Signal Transduction Events Elicited by Natural Products: Role of MAPK and Caspase Pathways in Homeostatic Response and Induction of Apoptosis

  • Kong, Ah-Ng Tony;Yu, Rong;Chen, Chi;Mandlekar, Sandhya;Primiano, Thomas
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • Many natural products elicit diverse pharmacological effects. Using two classes of potential chemopreventive compounds, the phenolic compounds and the isothiocyanates, we review the potential utility of two signaling events, the mitogen-activated protein kinases (MAPKs) and the ICE/Ced-3 proteases (caspases) stimulated by these agents in mammalian cell lines. Studies with phenolic antioxidants (BHA, tBHQ), and natural products (flavonoids; EGCG, ECG, and isothiocyanates; PEITC, sulforaphane), provided important insights into the signaling pathways induced by these compounds. At low concentrations, these chemicals may activate the MAPK (ERK2, JNK1, p38) leading to gene expression of survival genes (c-Fos, c-Jun) and defensive genes (Phase II detoxifying enzymes; GST, QR) resulting in survival and protective mechanisms (homeostasis response). Increasing the concentrations of these compounds will additionally activate the caspase pathway, leading to apoptosis (potential cytotoxicity). Further increment to suprapharmacological concentrations will lead to nonspecific necrotic cell death. The wider and narrow concentration ranges between the activation of MAPK/gene induction and caspases/cell death exhibited by phenolic compounds and isothiocyanates, respectively, in mammalian cells, may reflect their respective therapeutic windows in vivo. Consequently, the studies of signaling pathways elicited by natural products will advance our understanding of their efficacy and safety, of which many man become important therapeuitc drugs of the future.

  • PDF