• Title/Summary/Keyword: Natural Polymer

Search Result 691, Processing Time 0.033 seconds

Effect of Bentonite on the Mechanical Properties of ABS Resin (Bentonite가 ABS 수지의 기계적 물성에 미치는 영향)

  • Don, Yoon-Seung;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.981-989
    • /
    • 1994
  • For the development of new material used bentonite in ceramic/organic material composite, ABS(acrylonitrile-butadiene-styrene) material was used as a matrix polymer and a series of bentonite was blended together. This bentonite, filler like talc or mica for plastic material, was used since natural bentonite(Ca type) is easily obtainable in Korea, Na-bentonite changed from natural bentonite by $Na_2CO_3$ based on the specified compositions, changes in the static and dynamic mechanical properties. It was discovered that the increased content of natural and Na- bentonite results in higher modulus with reduced impact strength. And Rockwell hardness was constant. And Na- bentonite filled polymer showed improvement in impact strength and lower in modulus as the natural bentonite filled polymer. The storage modulus(E') of Na- bentonite filled ABS resin was higher than that of Ca- bentonite filled ABS resin, while higher temperature, storage modulus(E') decreased. At higher frequency, tan ${\delta}$ peak was shifted at high temperature.

  • PDF

Biocompatibility of Biodegradable Films by Natural Polymers (천연고분자 분해성 필름의 생체적합성 연구)

  • Hwang, Sung Kwy;Lee, Ki Chang;Rhim, Kook Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.939-943
    • /
    • 1999
  • Recently there has been an explosion of interest in the topic of biodegradable polymers for medical applications. In this study, films were prepared by solution casting method using natural polymers (xanthan, locust bean, guar gum, chitosan and algin) as biomaterials. Biocompatibility of films prepared from natural polymer as a skin implant was evaluated. These biodegradable films were subcutaneously implanted in the back of rats and their biodegradability was investigated by the evaluation of changes in structure, film weight and hematology as a function of time for the biotransformation. The result of rats test showed that locust bean and guar gum induced some suspects of non-biocompatibility in the tissue by foreign body reaction 24 and 48 hrs after implantation. These results showed the potential of partial biodegradable films prepared from natural polymer for ideal skin biomaterials at short period.

  • PDF

Study on Phase Separation of Carbon Dioxide-reducible Polymer Blends (이산화탄소 저감형 고분자 블렌드의 상 분리 특성연구)

  • Cho, Yong-Kwang;Kim, Yeong-Woo;Lee, Hak Yong;Park, Sang-Bo;Park, Chan-Young;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • Sustainable and eco-friendly polymers, natural polymers, bio-based polymers, and degradable polyesters, are of growing interest because of environmental concerns associated with waste plastics and emissions of carbon dioxide from preparation of petroleum-based polymers. Degradable polymers, poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), and poly(L-lactic acid) (PLLA), are related to reduction of carbon dioxide in processing. To improve a weak mechanical property of a degradable polymer, a blending method is widely used. This study was forced on the component separation of degradable polymer blends for effective recycling. The melt-mixed blend films in a specific solvent were separated by two layers. Each layer was analysed by FT-IR, DSC, and contact angle measurements. The results showed that each component in the PPC/PLLA and PPC/PBAT blends was successfully separated by a solvent.

Structure of a single polymer chain confined in a dense array of nanoposts

  • Joo, Heesun;Kim, Jun soo
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.48-52
    • /
    • 2015
  • Control of polymer conformations in heterogeneous confinement plays an important role in natural and engineering processes. We present a simulation study on the conformational structure and dynamics of a single, flexible polymer in a dense array of nanoposts with different sizes and separations, especially, when the volume of the interstitial space formed between four nanoposts is less than the size of the polymer chain. When a polymer is placed in the array of nanoposts, the size of polymer increases compared with that in the absence of nanoposts due to the confinement effect. It is shown that when a polymer is confined in the array of nanoposts the chain is elongated in the direction parallel to the nanoposts. As the interstitial volume between four nanoposts decreases either by increasing the nanopost diameter or by decreasing the separation between nanoposts, the chain elongation becomes more pronounced. On the contrary, the polymer size varies in a non-monotonic fashion, with an initial elongation followed by a chain contraction, as the interstitial volume is reduced both by increasing the nanopost diameter and decreasing the separation at the same time while keeping constant the width of the passageway between two nanoposts. The simulation analysis shows that the non-monotonic dependence of polymer size is determined by interplay between the chain alignment along the nanoposts in each interstitial volume and the chain spreading through passageways over several interstitial volume.

  • PDF

Polypropylene-Natural Fiber Composites: Rheological Properties during Mixing and Thermal Properties (폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 물성 및 열적 특성)

  • Kim, Sam-Jung;Yoo, Chong Sun;Kim, Gue-Hyun;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.24-29
    • /
    • 2008
  • Polypropylene-natural fiber composites have been prepared and their rheological properties during mixing and thermal properties were investigated. Two types of natural fibers (cotton fiber and wood fiber) were compared. On increasing fiber contents, the torque values of composites were increased, where the cotton fiber exhibited higher increase in torques. The torque values of composites were higher as the MI of PP decreased. X-ray diffraction and differential scanning calorimetry results showed an increase in the crystallization temperature but a decrease of crystallinity of the PP/natural fiber composites on increasing fiber contents.

  • PDF

Layered Silicate-Polymer Nanocomposites

  • Jeong, Han-Mo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.18-18
    • /
    • 2003
  • Natural clays are composed of oxide layers whose thickness is about 1nm and cations existing between the layers. A number of these layers makes primary particles with a height of about 8∼10nm and these primary particles make aggregates with a size of about 0.1∼10$\mu\textrm{m}$. When layered silicate was made to be organophilic, by exchanging the interlayer cations with organic cationic molecules, the matrix polymer can penetrate between the layers to give a nanocomposite, where 1nm-scal clay layers exist separately in a continuous polymer matrix. These nanostructured hybrid organic-inorganic composites have attracted the great interest of researchers over the last 10 years. They exhibit improved performance properties compared with conventional composites, because their unique phase morphology by layer intercalation or exfoliation maximizes interfacial contact between the organic and inorganic phases and enhances interfacial properties. Since the advent of nylon-6/montmorillonite nanocomposite developed by Toyota Motor Co., the studies on layered silicate-polymer nanocomposites have been successfully extended to other polymer systems. They greatly improved the thermal, mechanical, barrier, and even the flame-retardant properties of the polymers.

  • PDF

Planting Properties of Porous Polymer Block Using Recycled Coarse Aggregates (재생굵은골재를 사용한 다공성 폴리머 블록의 식생 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • This study was performed to evaluate the planting properties of herbaceous plant and cool-season grass in porous polymer blocks that were manufactured by using recycled coarse aggregates and unsaturated polyester resin to develop environmentally friendly planting blocks. Unsaturated polyester resin, natural and recycled coarse aggregates and $CaCO_3$ were used. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes(5-10 and 5-20mm). Tests for the void ratio and compressive strength of porous polymer concrete were performed at curing age 7 days. Also, porous polymer block using recycled coarse aggregates were applied to kinds of plants such as tall fescue, Perennial ryegrass, Lesedeza and Alfalfa. After seed, initial germination, germination ratio, cover view and growth length for planting blocks were estimated by various methods.

Effect of polymerization in inducing yolk antibodies (계란 항체의 생산에 있어서 polymerization의 효과)

  • Lee, Kyeong-Ae
    • Korean Journal of Human Ecology
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1993
  • Insulin polymer was used as an immunogen to elicit homogeneous anti-insulin yolk antibodies in a large scale. Insulin polymer prepared was heterogeneous mixture (MW=6,000-70,000). Insulin polymer showed stronger immunogenecity than insulin monomer. The affinity of yolk antibodies elicited with insulin polymer was slightly lower than that of yolk antibodies elicited with insulin monomer. The specificity of yolk antibodies obtained with insulin monomer and insulin polymer was directed mostly to native insulin.

  • PDF

Engineering Properties of Carbon Fiber and Glass Fiber Reinforced Recycled Polymer Concrete (탄소섬유 및 유리섬유로 보강한 재생 폴리머 콘크리트의 공학적 특성)

  • Noh, Jin Yong;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • This study was performed to evaluate engineering properties of carbon and glass fiber reinforced recycled polymer concrete. Fiber reinforced recycled polymer concrete were used recycled aggregate as coarse aggregate, natural aggregate as fine aggregate, $CaCO_3$ as filler, unsaturated polyester resin as binder, and carbon and glass fiber as fibers. The compressive and flexural strength of carbon fiber reinforced recycled polymer concrete were in the range of 68~81.5 MPa and 19.1~21.5 MPa at the curing 7days. Also, the compressive and flexural strength of glass fiber reinforced recycled polymer concrete were in the range of 69.4~85.1 MPa and 19~20.1 MPa at the curing 7days. Abrasion ratio of carbon and glass fiber reinforced recycled polymer concrete were decreased 21.6 % and 11.6 % by fiber content 0.9 %, respectively. After impact resistance test, drop numbers of initial and final fracture were increased with increase of fiber contents. Accordingly, carbon fiber and glass fiber reinforced recycled polymer concrete will greatly improve the hydraulic structures, underground utilities and agricultural structures.

Compressive Strength and Acid-Resistant of Polymer Concrete Using Redispersible Polymer and Blast Furance Slag Powder (재유화형 분말수지와 고로 슬래그 미분말을 혼입한 폴리머 콘크리트의 압축강도 및 내산성)

  • Kim, In-Su;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.19-27
    • /
    • 2008
  • This study was performed to evaluate the compressive strength and acid-resistant of polymer concrete using redispersible polymer powder(RPP) and blast furnace slag powder(BSP). Material used were ordinary portlant cement, recycled coarse aggregate, natural fine aggregate, redispersible polymer powder and blast furnace slag powder. The main experimental variables were the substitution ratio of redispersible polymer powder and blast furnace slag powder, when the substitution ratios of RPP were 0, 1, 2, 3, 4, 5 and 6%, and those of BSP were 10%. The compressive strength and acid-resistant of polymer concrete using RPP and BSP were compared with those of ordinary concrete(Basis). When the substitution ratio of RPP was 1%, at age of 28 days, the compressive strength were more higher than those of Basis by 24%, and it was decreased with increasing the RPP content, respectively. Also, the water absorption ratio was decreased with increasing the RPP content. But, the acid-resistant was improved with increasing the RPP content.