• Title/Summary/Keyword: Natural Modes

Search Result 693, Processing Time 0.022 seconds

Changes of modal properties of simply-supported plane beams due to damages

  • Xiang, Zhihai;Zhang, Yao
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.153-175
    • /
    • 2009
  • Damage detection methods using structural dynamic responses have received much attention in the past decades. For bridge and offshore structures, these methods are usually based on beam models. To ensure the successful application of these methods, it is necessary to examine the sensitivity of modal properties to structural damages. To this end, an analytic solution is presented of the modal properties of simply-supported Euler-Bernoulli beams that contain a general damage with no additional assumptions. The damage can be a reduction in the bending stiffness or a loss of mass within a beam segment. This solution enables us to thoroughly discuss the sensitivities of different modal properties to various damages. It is observed that the lower natural frequencies and mode shapes do not change so much when a section of the beam is damaged, while the mode of rotation angle and curvature modes show abrupt change near the damaged region. Although similar observations have been reported previously, the analytical solution presented herein for clarifying the mechanism involved is considered a contribution to the literature. It is helpful for developing new damage detection methods for structures of the beam type.

Damage Detection of Truss Structures Using Nonlinear Parametric Projection Filter (비선형 파라메트릭 사영필터에 의한 트러스 구조물의 손상 검출)

  • Mun, Hyo-Jun;Suh, Ill-Gyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, a study of damage detection for 2-Dimensional Truss Structures using the parametric projection filter theorr is presented. Many researchers are interested in inverse problem and one of solution procedures for inverse problems that are very effective is the approach using the filtering algorithm in conjunction with numerical solution methods. In filtering algorithm, the Kalman filtering algorithm is well known and have been applied to many kind of inverse problems. In this paper, the Parametric projection filtering in conjunction with structural analysis is applied to the identification of damages in 2-D truss structures. The natural frequency and modes of damaged truss model are adopted as the measurement data. The effectiveness of proposed method is verified through the numerical examples.

  • PDF

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

Social Media as a Technology for Being : The Qualities of Being on Social Media and the New Problematics of Social Media Research

  • Juhn, Sunghyun
    • Asia pacific journal of information systems
    • /
    • v.26 no.1
    • /
    • pp.41-65
    • /
    • 2016
  • What prevails in the today's research on social media is a functional view of technology. Technology is regarded as a set of technical devices used to conduct specific social functions, such as personal communication, social networking, public posting, and corporate advertising, among others. This paper proposes that such a functional view of technology renders social media research unduly limited and constrained in its scope, level, and direction of inquiry. Problematizing on some representative social media research efforts in the field of IS, this paper provides an alternative perspective, that is, to view social media as a technology-for-being that exerts a deeper level of influence on our existence, molding and shaping the nature and mode of being itself. Such a technology-for-being perspective has been rarely explored or subscribed to in the present IS social media research. Building upon the new conception of social media as a technology-for-being, this essay explores the quality of being in the context of social media. Five such qualities are discussed, including virtuality, materiality, externality, liquidity, and hybridity. The essay also explores the deep structural problems of research to guide future social media research. Six of such problems include Problematize-the-Natural, Follow-the-Actor, Welcome-the-Frankenstein, Weber-meets-Frankenstein, Freud-meets-Frankenstein, and Marx-meets-Frankenstein. The essay concludes with discussions on the implications of the essay, its limitations, and suggestions for future work.

A Study of Vibration Analysis Due to Structual Changes of Dynamic Structure (동적 구조물의 구조변화에 의한 진동해석 연구)

  • 현천성;이기형;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2033-2048
    • /
    • 1992
  • This paper presents the theoretical development and qualitative evaluation of a new concept in the mathematical modeling of dynamic structures. We use both test data and analytical approximations to identify the parameters of an incomplete model. The model has the capability of predicting the response of the points of interest on the structure over the frequency range of interest and can be used to predict the changes in natural frequencies and normal modes due to structural changes. The theory was tested by running simulated tests on a relatively simple structure, identifying the parameters of the incomplete model, and using this model to predict the effects on frequency and mode shapes of several mass and stiffness changes. The conditions of the tests were varied by selecting different numbers of points of measurement, varying the frequency range, and by including assumed measurement error. It is recommended that the theoretical development be continued and that applications to more complex structures be carried out in order to develop a better understanding of the limitations and capabilities of the method. A successful, more definitive sevaluation could lead to immediate practical applications.

Acoustic characteristics of a loudspeaker obtained by vibration and acoustic analysis (진동/음향 해석에 의한 스피커의 음향특성 연구)

  • Kim, Jung-Ho;Kim, Jun-Tai;Kim, Jin-Oh;Min, Jin-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1742-1756
    • /
    • 1997
  • The acoustic characteristics of a direct radiator type loudspeaker has been studied in this paper. The natural modes of the speaker cone vibration analyzed numerically by the finite element method have been verified by comparing them with experimental results. The so-ap-proved finite-element model has been used to calculate the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone paper has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The frequency characteristics, directivity, and sound pressure distribution of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. The variations of the acoustic characteristics due to the changes of some design parameter values can be examined using the numerical model.

A Method of Input Shaper Design Using Virtual Mode for Undamped Vibration Systems (가상모드를 이용한 비감쇠 진동계 입력성형기 설계 방법)

  • Hong, S.W.;Choi, H.S.;Seo, Y.G.;Park, S.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2008
  • Input shaping is an efficient tool to eliminate transient and residual vibration caused by motion of mechanical systems. However, the rise time of the systems tends to increase due to the presence of input shapers. This paper is concerned with the rise time reduction when using input shaping. To this end, this paper proposes an input shaper design method for an undamped single mode vibration system using a virtual mode, which is not an actual mode but reflected in the design process. The essence of the proposed method is to design a three-impulse input shaper as if a single mode system has two modes: one actual mode and one virtual mode. The natural frequency of the virtual mode is a design parameter to change the rise time of the system. This paper discusses the performance of the proposed input shapers by simulation.

Modal parameter identification of in-filled RC frames with low strength concrete using ambient vibration

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.137-149
    • /
    • 2014
  • In this study, modal parameters such as natural frequencies, mode shapes and damping ratios of RC frames with low strength are determined for different construction stages using ambient vibration test. For this purpose full scaled, one bay and one story RC frames are produced and tested for plane, brick in-filled and brick in-filled with plaster conditions. Measurement time, frequency span and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques are used together. It is shown that the ambient vibration measurements are enough to identify the most significant modes of RC frames. The results indicate that modal parameters change significantly depending on the construction stages. In addition, Infill walls increase stiffness and change the mode shapes of the RC frame. There is a good agreement between mode shapes obtained from brick in-filled and in-filled with plaster conditions. However, some differences are seen in plane frame, like expected. Dynamic characteristics should be verified using finite element analysis. Finally, inconsistency between experimental and analytical dynamic characteristics should be minimize by finite element model updating using some uncertain parameters such as material properties, boundary condition and section properties to reflect the current behavior of the RC frames.

Field monitoring of wind effects on a super-tall building during typhoons

  • Zhi, Lunhai;Li, Q.S.;Wu, J.R.;Li, Z.N.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.253-283
    • /
    • 2011
  • This paper presents the field measurement results of wind effects on a super-tall building (CITIC Plaza, 391 m high) located in Guangzhou. The field data such as wind speed, wind direction and acceleration responses were simultaneously and continuously recorded from the tall building by a wind and vibration monitoring system during two typhoons. The typhoon-generated wind characteristics including turbulence intensity, gust factor, peak factor, turbulence integral length scale and power spectral density of fluctuating wind speed were presented and discussed. The dynamic characteristics of the tall building were determined based on the field measurements and compared with those calculated from a 3D finite element model of the building. The measured natural frequencies of the two fundamental sway modes of the building were found to be larger than those calculated. The damping ratios of the building were evaluated by the random decrement technique, which demonstrated amplitude-dependent characteristics. The field measured acceleration responses were compared with wind tunnel test results, which were found to be consistent with the model test data. Finally, the serviceability performance of the super-tall building was assessed based on the field measurement results.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.