• Title/Summary/Keyword: Natural Modes

Search Result 692, Processing Time 0.027 seconds

Seismic Analysia of Absorber Rod in KMRR Reactivity Control Mechanism (다목적연구로 반응도 제어장치의 제어봉에 대한 내진해석)

  • Cho, Yeong-Garp;Yoo, Bong;Kim, Tae-Ryong;Ahn, Kyu-Suk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.44-49
    • /
    • 1990
  • This study is a seismic analysia of absorber rod in KMRR Reactivity Control Mechanism. The model being studied i8 two coaxial tubes (control absorber rod and flow tube) immersed in the water and partially coupled (overlap) by water Hap. The hydrodynamic mass effects by the water in each surrounding conditions are considered in the model. The natural frequencies, stresses and displacements of the system due to Safe Shutdown Earthquake are computed in the cases of in-phase modes and out-of-phase modes of two coaxial tubes. The results show that maximum stresses are well below the allowable limit and maximum displacements at the ends of both tubes in out-of-phase modes are so huck that the tubes contact each other in the overlap zone.

  • PDF

High-order, closely-spaced modal parameter estimation using wavelet analysis

  • Le, Thai-Hoa;Caracoglia, Luca
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.423-442
    • /
    • 2015
  • This study examines the wavelet transform for output-only system identification of ambient excited engineering structures with emphasis on its utilization for modal parameter estimation of high-order and closely-spaced modes. Sophisticated time-frequency resolution analysis has been carried out by employing the modified complex Morlet wavelet function for better adaption and flexibility of the time-frequency resolution to extract two closely-spaced frequencies. Furthermore, bandwidth refinement techniques such as a bandwidth resolution adaptation, a broadband filtering technique and a narrowband filtering one have been proposed in the study for the special treatments of high-order and closely-spaced modal parameter estimation. Ambient responses of a 5-story steel frame building have been used in the numerical example, using the proposed bandwidth refinement techniques, for estimating the modal parameters of the high-order and closely-spaced modes. The first five natural frequencies and damping ratios of the structure have been estimated; furthermore, the comparison among the various proposed bandwidth refinement techniques has also been examined.

Vibration Analysis of Steam Turbine-Generator Rotor System Using Component Mode Synthesis Method (구분모드합성법을 이용한 증기터빈$\cdot$발전기축계의 진동해석)

  • Yang, B.S.;Kim, Y.H.;Choi, B.G.;Lee, H.
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.401-408
    • /
    • 1999
  • A method is presented for the vibration analysis of steam turbine-generator rotor system based on the component mode synthesis method. The motion of each component of the system is described by superposing constraint mode associated with boundary coordinates and constrained normal modes associated with internal coordinates. This method using real fixed-interface modes allows for significant reduction in system model size while retaining the essential dynamic characteristics of the lower modes. The capability of this method is demonstrated in the natural frequency and unbalance response analysis of the steam turbine-generator rotor system in which the dynamics of the pedestal is considered. The results by the present method are compared with finite element method and trnasfer matrix method in terms of the accuracy and computing time.

  • PDF

The Effects of Different Cross Section on Natural Frequency of the Advanced Composite Materials Road Structures (복합신소재 도로구조물의 변환단면이 고유진동수에 미치는 영향)

  • Han, Bong Koo
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • PURPOSES: This paper aims to give a guideline and the way to apply the advanced composite materials theory to the road structures with different cross sections to the practicing engineers. METHODS: To simple but exact method of calculating natural frequencies corresponding to the modes of vibration of road structures with different cross sections and arbitrary boundary conditions. The effect of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. RESULTS: Simple method of vibration analysis for calculating the natural frequency of the different cross sections is presented. CONCLUSIONS: Simple method of vibration analysis for calculating the natural frequency of the different cross sections is presented. This method is a simple but exact method of calculating natural frequencies of the road structures with different cross sections. This method is extended to be applied to two dimensional problems including composite laminated road structures.

Extension of a semi-analytical approach to determine natural frequencies and mode shapes of a multi-span orthotropic bridge deck

  • Rezaiguia, A.;Fisli, Y.;Ellagoune, S.;Laefer, D.F.;Ouelaa, N.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.71-87
    • /
    • 2012
  • This paper extends a single equation, semi-analytical approach for three-span bridges to multi-span ones for the rapid and precise determination of natural frequencies and natural mode shapes of an orthotropic, multi-span plate. This method can be used to study the dynamic interaction between bridges and vehicles. It is based on the modal superposition method taking into account intermodal coupling to determine natural frequencies and mode shapes of a bridge deck. In this paper, a four- and a five-span orthotropic roadway bridge deck are compared in the first 10 modes with a finite element method analysis using ANSYS software. This simplified implementation matches numerical modeling within 2% in all cases. This paper verifies that applicability of a single formula approach as a simpler alternative to finite element modeling.

Numerical Analysis of Heavy-weight Impact Noise for Apartment Units Considering Acoustic Mode (음향모드를 고려한 공동주택 중량충격음 소음해석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho;Im, Ju-Hyeuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.676-684
    • /
    • 2012
  • Numerical analysis was performed to investigate the heavy-weight impact noise of apartment houses. The FEM is practical method for prediction of low-frequency indoor noise. The results of numerical analysis, the shape of the acoustic modes in room-2 are similar to that of acoustic pressure field at the fundamental frequency of acoustic modes. And the acoustic pressure was amplified at the natural frequency of the acoustic modes and structural modes. The numerical analysis result of sound pressure level at 63 Hz and 125 Hz octave-band center frequency are similar to the test results, but at 250 Hz and 500 Hz have some errors. Considering most of bang-machine force spectrum exists below 100 Hz, the noise at 250 Hz and 500 Hz are not important for heavy-weight impact noise. Thus, the FEM numerical analysis method for heavy-weight impact noise can apply to estimate heavy-weight impact noise for various building systems.

Bearing and Rotordynamic Performance Analysis of a 250 kW Reduction Gear System (250 kW급 초임계 CO2 발전용 감속기의 유체 윤활 베어링 및 회전체 동역학 특성 해석)

  • Lee, Donghyun;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.107-112
    • /
    • 2016
  • This paper presents a rotordynamic analysis of the reduction gear system applied to the 250 kW super critical CO2 cycle. The reduction gear system consists of an input shaft, intermediate shaft, and output shaft. Because of the high rotating speed of the input shaft, we install tilting pad bearings, rolloer bearings support the intermediate and output shafts. To predict the tilting pad bearing performance, we calculate the applied loads to the tilting pad bearings by considering the reaction forces from the gear. In the rotordynamic analysis, gear mesh stiffness results in a coupling effect between the lateral and torsional vibrations. The predicted Campbell diagram shows that there is not a critical speed lower than the rated speed of 30,000 rpm of the input shaft. The predicted modes on the critical speeds are the combined bending modes of the intermediate and output shaft, and the lateral vibrations dominate when compared to the torsional vibrations. The damped natural frequency does not strongly depend on the rotating speeds, owing to the relatively low rotating speed of the intermediate and output shaft and constant stiffness of the roller bearing. In addition, the logarithmic decrements of all the modes are positive; therefore all modes are stable.

The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass (모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구)

  • Hur, Deog-Jae;Jung, Jae-Yup;Cho, Yeon;Park, Tae-Won
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

RELAP5 Analysis of a Condensation Experiment in an Inverted U-tube

  • Park, Chul-Jin;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.383-388
    • /
    • 1995
  • Two-phase transient phenomena in the noncondensable gas-filled closed loop was investigated numerically using the RELAP5/MOD3 version 3.1 computer code. The condensation heat transfer correlation for noncondensable gases was studied in detail. Two modes of the reflux condensation which can be characterized by countercurrent flow of steam and its condensed water and the oscillatory between reflux condensation and natural circulation were predicted well. However, the natural circulation mode which the condensed water carried over the U-bend concurrently with steam was failed to predict.

  • PDF