• Title/Summary/Keyword: Natural Melting

Search Result 133, Processing Time 0.024 seconds

Phase change process of the initially subcooled material in a vertical cylinder (초기적으로 과냉각된 수직실린더 내부 물질의 상변화 과정)

  • Baek, Yeong-Ryeol;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.24-35
    • /
    • 1997
  • Melting process inside in a vertical cylinder has been investigated numerically to observe heat transfer characteristics in the latent heat storage vessel applied to the thermal storage system. The time-dependent boundary fitted coordinate system was introduced to overcome the difficulty caused by the moving boundary. The present results are in good agreement with the available previous data when the initial subcooling effect of the solid phase is not considered. It is found that the melting is promoted by the natural convection, but is delayed by the initial subcooling effect of the solid phase.

Effect of the Height Change on the Melting Heat Transfer in a Rectangular Enclosure (정사각형 단면을 갖는 용기에서 단면의 크기 변화가 융해 열전달에 미치는 영향)

  • Han, Jin Ho;Ro, Sung Tack
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.208-217
    • /
    • 1990
  • A rectangular test section is devised by assuming two dimensional melting of a solid phase change material heated from two sides which are maintained at constant temperature and allowing a free expansion due to density difference between solid and liquid. The timewise melting shape is recorded photographically by the shadow graph method for several experimental conditions. The analysis shows that the melting process consists of four regimes. At first, the pure conduction heat transfer is dominant, and as time goes by natural convection grows and plays a role greatly. Experiments are carried out varying not only the wall temperature but height of the wall. Each effect of them on the melting process is obtained in the form of combination of dimensionless parameters, $Ste^{0.8}\;FoRa^{0.2}$. An algebraic correlation is suggested, which predicts the melted fraction well.

  • PDF

Thermal Instability of Natural Convection in a Glass Melting Furnace (유리 용융로에서 자연대류의 열적 불안정성)

  • Lim, Kwang-Ok;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1774-1783
    • /
    • 1998
  • The transition from steady laminar to chaotic convection in a glass melting furnace specified by upper surface temperature distribution has been studied by the direct numerical analysis of the two and three-dimensional time dependent Navier-Stokes equations. The thermal instability of convection roll may take place when modified Rayleigh number($Ra_m$) is larger than $9.71{\times}10^4$. It is shown that the basic flows in a glass melting furnace are steady laminar, unsteady periodic, quasi-periodic or chaotic flow. The dimensionless time scale of unsteady period is about the viscous diffusion time, ${\tau}_d=H^2/{\nu}_0$. Through primary and secondary instability analyses the fundamental unsteady feature in a glass melting furnace is well defined as the unsteady periodic or weak chaotic flow.

Experimental Study of Close-Contact Melting of Phase-Change Medium Partially Filled in a Horizontal Cylinder (수평원관내 부분적으로 채원진 상변화물질의 융해과정)

  • 서정세;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2249-2260
    • /
    • 1995
  • An experiment of close contact melting of phase-change medium partially filled in an isothermally heated horizontal cylinder is performed which involves the volume expansion of liquid induced by the solid-liquid density difference. The solid-liquid interface motion and the free surface behavior of liquid were reported photographically. The experimental results show that the curvature of upper solid-liquid interface varied to flat as melting progresses. In addition to the varying interface shape, the melting rate increases with the lower initial height of solid and the free surface height of liquid increases linearly. The experimental results of molten mass fraction were expressed in a function of dimensionless time Fo.Ste$^{3}$4/ and agreed well with the analytical solutions.

Finite element solutions of natural convection in porous media under the freezing process (동결과정을 포함한 다공층에서 자연대류에 대한 유한요소 해석)

  • Lee, Moon-Hee;Choi, Chong-Wook;Seo, Suk-Jin;Park, Chan-Guk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.51-56
    • /
    • 2000
  • The Finite Element Solutions Is reported on solid-liquid phase change in porous media with natural convection including freezing. The model is based on volume averaged transport equations, while phase change is assumed to occur over a small temperature range. The FEM (Finite Element Method) algorithm used in this study is 3-step time-splitting method which requires much less execution time and computer storage the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the energy equation. For natural convection including melting and solidification the numerical results show reasonable agreement with FDM (Finite Difference Method) results.

  • PDF

Close-contact melting of ice in a horizontal cylinder (수평원관내 얼음의 접촉융해과정)

  • ;;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2595-2606
    • /
    • 1995
  • Buoyancy-assisted melting of an unconstrained ice in an isothermally heated horizontal enclosure was numerically analyzed in a range of wall temperatures encompassing the density inversion point. The problem as posed here involves two physically distinct domains each of which has its own scales and respective heat transfer mode. These two domains join at the junction where the liquid squeezed out of the film region flushes into the lower melt pool. Both of these domains have been treated separately in the literature by a patching technique which invokes several, otherwise unnecessary, assumptions. The present study eliminates successfully such a superfluous procedure by treating the film and lower melt pool regions as a single domain. As a result of this efficient solution procedure, the interaction of the water stream ejected at the junction and the natural convection in the melt pool could be clarified for different wall temperatures. Though limited by two-dimensionality, the present results conformed indirectly the earlier reported transition of the flow pattern, as the wall temperature was increased over the density inversion point. The transient evolution of the melting surface, the time rate of change in melt volume fraction, the local and temporal variation of the heat transfer coefficients are analyzed and presented.

An Experimental Study on the Cooling Characteristics of the Liquid Cooling Radiator of the Natural Convection Type by Using the PCM (PCM을 적용한 자연대류형 수냉식 방열기의 냉각특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.324-329
    • /
    • 2008
  • The liquid cooling effect of a natural convection type radiator by using the PCM has been investigated experimentally. The radiator size is $423{\times}295{\times}83$ mm and PCM container size is $398{\times}270{\times}26$ mm. The objective is elapsed time higher than maximum time to reach for maximum operating temperature of a general liquid cooling radiator. This study, in order to study on the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, ambient and melting point of three type PCM. For the above experimental parameter, the melting time was performed about 180/250/560 min at input power 150 W and ambient $30^{\circ}C$ from using the three type PCM(PCM_S1/S2/S3) respectively. Furthermore, the effects of the thermal dissipation was decreased higher input power than lower input power at heating block and melting time of PCM. However, the effects of mass flow rate did not nearly affect of the thermal performance especially.

  • PDF

The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material (상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구)

  • Kim, J.K.;Yim, J.S.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

An Experimental Study on Close-Contact Melting in Horizontal Capsules with Circular or Rectangular Cross Sections (원형 및 사각단면을 가지는 수평캡슐에서의 접촉용해에 관한 실험적 연구)

  • Kim, Si-Pom;Lee, Chi-Woo
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.39-48
    • /
    • 1993
  • This empirical paper addresses the phenomena of the contact melting of PCM in horizontal capsules of circular and rectangular cross sections with various aspect ratio. The melting-rate tends to increase as the Stefan number increases. The case of rectangular tube displays larger melting-rate than that of circular tube, and the melting-rate increases as the aspect ratio decreasws for rectangular tubes. In case of circular tube, the effect of natural convection on the melting-rate is 6.1%, 8.6% and 11.2% according to Stefan number 0.0772, 0.1287 and 0.1802 respectively.

  • PDF

The Melting Process in an Ice-Ball Capsule (아이스볼내의 융해과정에 대한 해석)

  • Suh, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.577-588
    • /
    • 1995
  • A numerical study is made on the melting process of an unconstrained ice inside an isothermal ice-ball capsule. The unmelted ice core is continuously ascending on account of buoyancy forces. Such a buoyancy-assisted melting is commonly characterized by the existence of a thin liquid film above the ice core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow associated with the buoyancy-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved in one domain. Numerical results are obtained by varying the wall temperature and initial temperature. The present results reported the transition of the flow pattern in a spherical capsule, as the wall temperature was increased over the density inversion point. In addition, time wise variation of the shapes for the liquid film and the lower ice surface, the time rate of change in the melt volume fraction and the melting distance at symmetric line is analyzed and is presented.

  • PDF