• Title/Summary/Keyword: Natural Gas and Hydrogen Engine

Search Result 49, Processing Time 0.021 seconds

Improvement of Thermal Efficiency using Atkinson Cycle in a High-Compression Ratio, Spark-Ignition, Natural Gas Engine for Power Generation (고압축비 전기점화 천연가스 발전용 엔진에서 앳킨슨 사이클 적용을 통한 열효율 향상)

  • Junsun Lee;Hyunwook Park;Seungmook Oh;Changup Kim;Yonggyu Lee;Kernyong Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • Natural gas is a high-octane fuel that is effective in controlling knocking combustion. In addition, as a low-carbon fuel with a high hydrogen-carbon ratio, it emits less carbon dioxide and almost no particulate matter compared to conventional fossil fuels. Stoichiometric combustion engines equipped with a three-way catalyst are useful in various fields such as transportation and power generation because of their excellent exhaust emission reduction performance. However, stoichiometric combustion engines have a disadvantage of lower thermal efficiency compared to lean combustion engines. In this study, a combination of high compression ratio and Atkinson cycle was implemented in a 11 liter, 6-cylinder, spark-ignition engine to improve the thermal efficiency of the stoichiometric engine. As a result, pumping and friction losses were reduced and the operating range was extended with optimized Atkinson camshaft. Based on the exhaust gas limit temperature of 730℃, the maximum load and thermal efficiency were improved to BMEP 0.66 MPa and BTE 35.7% respectively.

A Study on the Knocking Characteristics with Various Excess Air Ratio in a HCNG Engine (HCNG 엔진의 공기과잉율 변화에 따른 노킹 특성에 관한 연구)

  • Lim, Gihun;Park, Cheolwoong;Lee, Sungwon;Choi, Young;Kim, Changgi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • As emission regulation for vehicle has been reinforced, many researches carried out for HCNG(hydrogen-natural gas blends) fuel to the conventional compressed natural gas (CNG) engine. However, abnormal combustion such as backfire, pre-ignition or knocking can be caused due to high combustion speed of hydrogen and it can result in over heating of engine or reduction of thermal efficiency and power output. In the present study, improvement of combustion performance was observed with HCNG fuel since it can extend a flammability limit. Knocking characteristics for CNG and HCNG fuel were investigated. Feasibility of HCNG fuel was evaluated by checking the knock margin according to excess air ratio. The operation of engine with HCNG was stable at minimum advance for best torque(MBT) spark timing and knock phenomena were not detected. However, it is necessary to prepare higher knock tendency since possibility of knock is higher with HCNG fuel.

Effect of Reduced Valve Overlap on Emission Characteristics of Hydrogen-Compressed Natural Gas Engine (수소-천연가스엔진에서 밸브오버랩 감소가 배기특성에 미치는 영향)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In order to meet the current emission regulations (EURO-6), it is necessary to significantly reduce $CH_4$ and $NO_X$ emissions. This study investigated the effect of a reduction in the valve overlap on the combustion and emission characteristics of a hydrogen-compressed natural gas engine under a part-load operating condition. The combustion and emission characteristics were analyzed for each fuel using the original camshaft and an altered camshaft with reduced valve overlap. The results showed that the thermal efficiency was decreased and the fuel flow was increased when using the altered camshaft. The $CO_2$ and $CH_4$ emissions were increased as a result of the reduced thermal efficiency. Under lean operating conditions, the $NO_X$ emission was decreased compared with one of the conventional camshaft. Thus, under the same fuels and operating conditions, it had a harmful influence on the emission characteristics and thermal efficiency.

Effect of Compression Ratio Change on Emission Characteristics of HCNG Engine (압축비 변화가 수소-천연가스 엔진의 배기특성에 미치는 영향)

  • Lee, Sung Won;Lim, Gi Hun;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.473-479
    • /
    • 2013
  • This study focused on a heavy-duty natural gas engine fuelled with HCNG (CNG: 70 vol%, hydrogen: 30 vol%) and CNG. To study the emission characteristics of an HCNG engine with high compression ratio, the exhaust gas of CNG and HCNG fuel were analyzed in relation to the change in the compression ratio at the half load condition. The results showed that the thermal efficiency improved with an increase in the compression ratio. Consequently, $CO_2$ emission decreased. CO emission increased with inefficient oxidation due to the low exhaust gas temperature. $NO_x$ emission with high compression ratio was increased at the same excess air ratio condition. However, $NO_x$ emission was not affected by a compression ratio exceeding ${\lambda}$ = 1.9 because of the same MBT timing.

A Study on Generating efficiency of the Double Acting Stirling Engine/Generator (양방향 스털링엔진/발전기의 효율 특성 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.114-120
    • /
    • 2016
  • This paper describes generating efficiency characteristics of the double acting Stirling engine/generator for domestic small-scale CHP (Combined Heat and Power) system. In small distributed generation applications, Stirling engine has competition from fuel cell, microturbine and etc. In order to be economical in the applications, a long life with minimum maintenance is generally required. Free piston Stirling engine (FPSE) has no crank and rotating parts to generate lateral forces and require lubrication. Double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric displacement and are connected with moving magnet type linear generators for power generation from PV work. In experiments, 1 kW class double acting free piston Stirling engine/generator is fabricated and tested. Heat is supplied to hot end of engine by the combustion of natural gas and converted to electric power by linear generators which are assembled with power pistons. The electric parameters such as voltage, current and phase are measured with for variable flow rate of fuel gas. Especially, generating efficiency of FPSE is measured with three different measurement methods. Generating efficiency of the double acting Stirling engine/alternator is about 24%.

Economic Evaluation of ESS and Natural Gas Generator for Expansion of New and Renewable Generation (신재생발전 확대적용을 위한 ESS와 천연가스발전기의 경제성 평가)

  • JOO, YONGJIN;SHIN, JUGON;SEO, DONGKYUN;PARK, SEIK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.363-369
    • /
    • 2018
  • This paper considers the alternative way to mitigate cost for REC instead of Photovoltaic (PV) panels with Energy Storage System (ESS). This study starts from an economic analysis of a 1 megawatt PV system without ESS. Several assumptions have been applied in consideration of the current domestic situation. Based on this result, the economic efficiency of PV with ESS improved. However, the reliance on government subsidies was very high. The alternative way to cover the fluctuation power from renewable energy was reviewed with economical and technical way. In case the natural gas engine applied to PV, the IRR and Levelized Cost of Electricity (LCOE) can be improved without ESS. And if small amount of additional REC, the IRR can be improved up to investment level.

Effect of Operating Condition Change on the Conversion Efficiency of TWC with HCNG Engine (운전조건 변화가 HCNG 엔진용 삼원촉매 전환효율에 미치는 영향)

  • Kim, Chang-Gi;Lee, Sung-Won;Yi, Ui-Hyung;Park, Cheol-Woong;Lee, Sun-Youp;Choi, Young;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.40-46
    • /
    • 2015
  • Stoichiometric combustion engine with Three-way catalyst had an advantage that can reduce the harmful emissions effectively. Fuel equivalence ratio controlled from engine is very important because Fuel equivalence ratio with high conversion efficiency was narrow. This study analyzed the conversion efficiency under whole range of operating area for to evaluate the performance of three-way catalyst. In order to identify the Optimum conversion efficiency, the conversion efficiency due to change the control value of fuel equivalence ratio was investigated. The result show that conversion efficiency of emissions(more than 95%) has discovered by means of fuel equivalence ratio control at each test condition. As engine power increases, optimal fuel equivalence ratio tended to increase linearly under operating conditions of similar exhaust gas temperature.

A Study on the Full Load Performance and Emission Characteristics with Turbo-charger Change in a HCNG Engine (HCNG 엔진의 터보차저 변경에 따른 전부하 출력 및 배출가스 특성 연구)

  • Park, Cheolwoong;Kim, Changgi;Lim, Gihun;Lee, Sungwon;Choi, Young;Lee, Sunyoup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.8-14
    • /
    • 2013
  • Hydrogen-natural gas blends(HCNG) engine is optimizing technology of performance and emission characteristics with use of hydrogen's fast flame speed and wide flammability limit. As lean-burn limit is extended, the improvement in thermal efficiency and harmful emissions can be achieved. However, the extension of lean-burn limit under a wide open throttle operation point could be realized with the increase in boosting capacity in a lean-burn engine with turbo-charging system. In the present study, the power output characteristics of HCNG engine with turbo-charger change is assessed and feasibility of the increase in boosting capacity is evaluated. The turbo-charger design with high efficiency at higher flow rate rather than higher boosting pressure makes efficient operation possible at relatively rich mixture condition.

The Effect on the Combustion and Emission Characteristics of HCNG Engine According to the High Purity Hydrogen Contents (고순도 수소함량에 따른 HCNG 연소특성 및 배출가스 영향 평가)

  • Lee, Jong-Tae;Lim, Yun-Sung;Kim, Hyung-Jun;Lee, Seong-Wook;Lee, Jang-Hoon;Kim, Jong-Geu
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.152-157
    • /
    • 2012
  • This investigation decribes the effect of the combustion and emission characteristics of HCNG engine according to the high purity hydrogen contents. The HCNG fuel was made by the mixture with a high purity hydrogen ($H_2$) and a natural gas. The test vehicle was applied to the bi-fuel (Gasoline and CNG) system and this system was modified from the fuel supply and fuel tank. In addition, the three premixed HCNG fuels with mixed rate of 10, 20 and 30% of hydrogen were used to maintain the safety. In order to analyze the combustion characteristics of HCNG and CNG, the fuel was injected in the combustor with constant volume. The exhaust emission from light duty vehicle with bi-fuel system was analyzed by a chassis dynamometer and emission analyzer. From these results, the reduction rate of NOx emission increased in the HCNG fuel and emission amount of THC and CO shows a similar level with CNG fuel. This study can be utilized the basic data for the development of a new business plans related with HCNG engines.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.