• Title/Summary/Keyword: Natural Gas Reformer

Search Result 33, Processing Time 0.031 seconds

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Qualitative Risk Assessment of Hydrogen Compression Reforming Process (수소 압축 개질공정의 정성적 위험성 평가)

  • SHIN, DANBEE;SEO, DOOHYOUN;KIM, TAEHUN;RHIE, KWANGWON;LEE, DONGMIN;KIM, HYOUNGI;HONG, SEONGCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • In order to introduce the hydrogen economy and increase supply, research in the field of hydrogen production is being actively conducted. Among the hydrogen production methods, the method of steam reforming from natural gas and producing it currently accounts for about 50% of the global hydrogen production. In the method of steam reforming process, hydrogen can be produced by adding a reformer to an existing natural gas supply pipe. Because of these advantages, it is evaluated as a realistic production method at present in Korea, where the city gas supply chain is well established. But there is concern in that it is highly likely to be installed in downtown areas and residential spaces. In this study, the risk of the process of steam reforming to produce hydrogen was reviewed.

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Operation Results of the SOFC System Using 2 Sub-Module Stacks (2 모듈 스택을 이용한 SOFC 시스템 운전결과)

  • Lee, Tae-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.405-411
    • /
    • 2010
  • A 5kW class SOFC cogeneration system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a stack, a fuel reformer, a catalytic combustor, and heat exchangers. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. A 5kW stack was designed to integrate 2 sub-modules. In this paper, the 5kW class SOFC system was operated using 2 short stacks connected in parallel to test the sub-module and the system. A short stack had 15 cells with $15{\times}15 cm^2$ area. When a natural gas was used, the total power was about 1.38 kW at 120A. Because the sub-modules were connected in parallel and current was loaded using a DC load, voltages of sub-modules were same and the currents were distributed according to the resistance of sub-modules. The voltage of the first stack was 11.46 V at 61A and the voltage of the second stack was 11.49V at 59A.

Production of DME from CBM by KOGAS DME Process (KOGAS DME 공정을 이용한 CBM으로부터 DME 생산)

  • Cho, Won-Jun;Mo, Yong-Gi;Song, Taek-Yong;Lee, Hyen-Chan;Baek, Young-Soon;Denholm, Douglas;Ko, Glen;Choi, Chang-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.925-933
    • /
    • 2011
  • The traditional feedstock for dimethyl ether (DME) has been natural gas obtained by pipeline from a nearby natural gas or oil field. This report focuses on other feedstock: Coal bed methane (CBM). The resource availability and suitability of CBM for DME manufacturing have been investigated. CBM in a short time has become an important industry, providing an abundant clean-burning fuel and also suggesting as a feedstock for gas industry. The use of CBM will have very little impact on the KOGAS' DME process design and economics up to 50 vol% of $CO_2$ in the CBM source. Many of the CBM sources in Asia are high in $CO_2$, but pose no difficulties for the KOGAS' DME plant. Since tri-reformer requires substantial $CO_2$ in its feed, no $CO_2$ removal from the CBM feed is needed. The $CO_2$ in the CBM means that less $CO_2$ needs to be recycled from the downstream in the process.

Optimization of KOGAS DME Process From Demonstration Long-Term Test (KOGAS DME 공정의 실증 시험을 통한 최적화 기술개발)

  • Chung, Jongtae;Cho, Wonjun;Baek, Youngsoon;Lee, Changha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.559-571
    • /
    • 2012
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, and biomass. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. The aim of this article is to represent the development of new DME process with KOGAS's own technologies. KOGAS has investigated and developed new innovative DME synthesis process from synthesis gas in gaseous phase fixed bed reactor. DME has been traditionally produced by the dehydration of methanol which is produced from syngas, a product of natural gas reforming. This traditional process is thus called the two-step method of preparing DME. However, DME can also be manufactured directly from syngas (single-step). The single-step method needs only one reactor for the synthesis of DME, instead of two for the two-step process. It can also alleviate the thermodynamic limitations associated with the synthesis of methanol, by converting the produced methanol into DME, thereby potentially enhancing the overall conversion of syngas into DME. KOGAS had launched the 10 ton/day DME demonstration plant project in 2004 at Incheon KOGAS LNG terminal. In the mid of 2008, KOGAS had finished the construction of this plant and has successively finished the demonstration plant operation. And since 2008, we have established the basic design of commercial plant which can produce 3,000 ton/day DME.

Simulation of a 50 ㎾ Phosphoric Acid Fuel Cell System Using Natural Gas (천연가스를 사용하는 50 ㎾ 인산형 연료전지 시스템의 전산모사)

  • 서정원;김성준;설용건;이태희
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.75-82
    • /
    • 1993
  • A 50 ㎾ phosphoric acid fuel cell(PAFC) system using natural gas was simulated for steady state with the commercial software, ASPEN PLUS. The USER block and the FORTRAN block were prepared to simulate the cell. The changes of hydrogen yield according to the variation of several operating conditions were examined and the operating conditions to maximize hydrogen yield were obtained. The simulation results agree with the real data, which can be used to prepare the basic process data and the optimal conditions for the domestic commercial fuel cell system. H$_2$utilization rate over 50% should be maintained to achieve the efficiency of the conventional electricity generation. Energy consumption can be reduced by utilizing the heat released from the reformer and the cell which are operated at high temperatures.

  • PDF

Removal of Tar and Soot in The Syngas Produced from Gasification of Wood Chip by Using Catalytic Reformer (촉매 개질기를 이용한 우드칩 가스화 합성가스 내 타르 및 수트 제거)

  • Yoon, Sang-Jun;Son, Young-Il;Kim, Yong-Ku;Lee, Jae-Goo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • The catalytic steam reforming of woody biomass tar and soot to convert a synthetic gas containing hydrogen was investigated by using a bench-scale biomass gasification system. One commercial nickel-based catalyst, Katalco 46-6Q, and two different kinds of natural minerals, dolomite and olivine, were tested as a reforming catalyst at various reforming temperatures. The reaction characteristics of woody biomass tar were also investigated by TGA at a variety of heating rates. With all three catalysts conversion efficiency of tar and soot increased at increasing temperature. The reforming of tar and soot in the synthetic gas induce the increase of combustible gases such as $H_2$, CO and $CH_4$ in the product gas. The nickel-based catalyst showed a higher tar and soot conversion efficiency than mineral catalysts under the same temperature conditions.

Operating Characteristics on Coupling of Fuel-Cell System with Natural Gas Reformer (휴대전원용 직접알코올 연료전지의 OCV특성 연구)

  • Park, Se-Joon;Choi, Yong-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.592-596
    • /
    • 2009
  • DAFC(direct alcohol fuel cell) takes the same structure and operational principle with PEMFC(Proton exchange membrane fuel cell). However, DAFC, which uses liquid alcohol instead of hydrogen as fuel, is able to be used as a portable power for small-scaled electronic devices such as MP3, PMP, and mobile phone because alcohol is quite convenient steady-state compound to carry and store it. This paper presents the OCV(open circuit voltage) characteristics of the cases which are alcohol species and different weight rate of ethanol, respectively. The OCV of methanol fuel cell is slightly higher 0.2V than ethanol one, and 8% wt. rate ethanol is rated as the most appropriate fuel for DAFC.

Design of the Stand-alone Autothermal Reformer for Natural Gas (자체 기동형 천연가스 자열개질기 설계)

  • Koo, Jeongboon;Kim, Youngae;Kwon, Hyunji;Kwak, Inseob;Sin, Jangsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • 본 연구에서는 중 소형 SOFC에 적용할 수 있는 연료 변환 시스템으로 자체 기동 및 독립운전이 가능한 천연가스 자열개질(ATR) 반응기를 $10Nm^3/hr$급으로 개발하고자한다. 설계된 천연가스 자열개질기는 자열개질 촉매를 코팅한 금속 모노리스형 촉매체를 반응기 내에 장착함으로써 반응열을 신속하게 제거 또는 공급할 수 있는 시스템으로 구성되었다. 이는 금속 모노리스의 뛰어난 열전도 능력에 의해 반응기 내의 촉매층 전체 온도 분포를 균일하게 유지할 수 있는 저에너지형 자열개질 반응기이다. 또한 빠른 기동 특성을 실현하기 위하여 전기 발열식 촉매체(EHC ; Electically Heated Catalyst)를 장착한 start-up 시스템을 적용하여 천연가스 자열개질 반응기의 신속한 기동과 장치 간편화를 실현하였으며, 합성 syngas의 배열 회수를 위한 최적 열교환 시스템을 설계/적용함으로써 에너지 효율 향상을 도모하였다. 이와 같은 촉매 및 구조 시스템을 가지는 천연가스 자열개질 반응용 소형 연료변환 시스템을 원통형의 이중관 구조로 구성하고, 독립운전 모드로 개발함으로써 소형 SOFC의 연료 변환장치의 적용에 용이하게 하고자 한다.

  • PDF