• 제목/요약/키워드: Natural Gas Combustion

검색결과 266건 처리시간 0.023초

천연가스 전소엔진과 가솔린엔진의 성능과 배출가스 특성비교 (The Comparison of Performance and Emission Characteristics between CNG Engine and Gasoline Engine)

  • 김진영;박원옥;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.16-21
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. It can be used in conventional gasoline engine without major modification. Natural gas has some advantages than gasoline i.e. the high octane number, good mixing condition because of gas and wide inflamable limit. In the present study, a $1.8{\ell}$ conventional gasoline engine is modified for using the CNG as a fuel instead of gasoline. Performance and emission characteristics are compared between gasoline and CNG with 4 cylinder SI Engine which is controlled by programable ECU. Parameters of experimentation are equivalence ratio, spark timing and fuels. We analyzed the combustion characteristics of the engine using the cylinder pressure i.e. ignition delay, combustion duration and cycle variation. As a result, CNG engine shows lower exhaust emissions but brake torque is slightly reduced compared to gasoline engine. Overall combustion duration is longer than that of gasoline because of lower burning speed.

정적연소기내 예연소실 설계인자가 연소특성에 미치는 영향에 관한 실험적 연구 (Experimental Study of Variations in Combustion Characteristics with Prechamber Design Parameters in a Constant-Volume Combustion Chamber)

  • 양인규;한동식;김현규;장영준;송주헌;전충환
    • 대한기계학회논문집B
    • /
    • 제34권6호
    • /
    • pp.629-634
    • /
    • 2010
  • 천연가스는 최근 세계적으로 강화되고 있는 배기가스 규제를 만족시키기 위한 연료이다. 가스엔진개발에 있어 적은 배기가스와 보다나은 연료 소비효율이 요구되고 있다. 본 연구는 정적연소기 내에서 예연소실 설계 형상인자와 당량비에 따른 연소 특성을 연구하는데 초점을 맞추었다. 특히 예연소실 설계인자 중 오리피스 직경, 체적비와 당량비가 연소 최대압력과 질량연소분율에 미치는 영향에 대하여 연구 하였다. 본 논문은 예연소실 설계인자에 따른 연소 특성을 분석하여, 최적의 예연소실 설계인자를 제공하는 것을 목적으로 하고 있다.

천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션 (Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine)

  • 최인수
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

HCNG 엔진의 NOx 배출특성에 관한 연구 (A Study on the NOx Emission Characteristics of HCNG Engine)

  • 박철웅;김창기;최영;원상연;이선엽
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.78-83
    • /
    • 2011
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its high thermal efficiency and lower harmful emissions, including $CO_2$. Although the high octane value of natural gas increases engine output and efficiency due to the high compression ratio, this fuel is prone to such difficulties as a narrow limit of inflammability and a slow combustion speed in the lean burn operation domain, leading to unstable combustion and higher emissions of harmful exhaust gases. Hydrogen blended with natural gas can extend the lean burn limit while maintaining stable, efficient combustion and achieving lower NOx, hydrocarbon and green house gas emissions. In this study, the effect of hydrogen addition on an engine performance and NOx emission characteristics was investigated in a heavy duty natural gas engine. The results showed that thermal efficiency was increased and NOx emissions were reduced due to the expansion of lean operation range under stable operation. NOx emission can be significantly reduced with the retard of spark advance timing.

액화천연가스를 연료로 하는 시험용 액체로켓엔진의 성능해석 (Performance Analysis of the Experimental Liquid Rocket Engine using Liquefied Natural Gas as a Fuel)

  • 한풍규;이성웅;김경호;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.198-204
    • /
    • 2004
  • 액화천연가스를 연료로 사용하여 물 냉각 및 천연가스와 액화천연가스 재생냉각 연소시험을 수행하였다. 연소시험과 CEC86을 이용한 연소해석 결과를 액체로켓엔진 성능인자로서, 특성속도와 비추력 관점에서, 추진제 혼합비와 연료의 연소실 유입온도의 영향을 분석하였으며, 엔진성능이 추진제 혼합비와 연료의 연소실 유입온도의 영향을 크게 받고 있음을 알 수 있었다. 엔진 성능으로서 특성속도는 추진제 혼합비가 0.72∼0.75일 때, 이론적 비추력은 추진제 혼합비가 0.75일 때 최대 값을 보여주었으며, 연료의 연소실 유입온도의 증가에 비례하여 엔진 성능이 향상되는 경향에서 재생냉각이 엔진 성능을 증대시키는 경향을 확인하였다.

  • PDF

실린더내 흡기유동개선이 천연가스엔진의 연소성능에 미치는 영향 연구 (A Study on the Combustion Performance by the Improvement of In Cylinder Flow Motion in the Natural Gas Engine)

  • 정동수;서승우;오승묵;엄종호;장영준
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.90-96
    • /
    • 1995
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns is analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF

3차원 유한요소해석 기법을 사용한 수소-천연가스 혼소 가스터빈 연소기에서의 연소불안정 해석 (Combustion Instability Modeling in a Hydrogen-Natural Gas Mixed Fuel Gas Turbine Combustor using a 3-Dimensional Finite Element Method Approach)

  • 홍수민;김대식
    • 한국분무공학회지
    • /
    • 제27권1호
    • /
    • pp.36-41
    • /
    • 2022
  • In this study, the combustion instability characteristics according to the change in the hydrogen ratio in the fuel in the single nozzle system of the hydrogen-natural gas mixed gas turbine for power generation was analyzed using a three-dimensional finite element analysis-based Helmholtz solver. This combustor shows the instability characteristics in which mode transition occurs from a mode having a low amplitude near 70 Hz to a mode having a high amplitude of 250 Hz or higher as the hydrogen fraction in the fuel increases. The current modeling results are found to reasonably predict the main characteristics of the change in measured instability frequency and growth rate with the change in fuel composition.

선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성 (Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System)

  • 차천륜;황상순
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.

천연가스와 LPG/Air 혼합시 가스 호환성 연구 (A Study of Gas Interchangeability on Natural Gas and LPG/Air Mixture)

  • 한정옥;유현석;방효선
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1995년도 추계학술발표회 초록집
    • /
    • pp.126-138
    • /
    • 1995
  • In order to study the gas interchangeability, a series of tests and analysis were conducted regarding to natural gas and gas mixture. Natural gas was selected as a reference and NG-LPG/Air mixture as a substitute gas. The major interest was placed on the determination of interchangeability limits for different mixing conditions. The parameters of Wobbe Index and Combustion Potential were employed in estimating the gas interchangeability, The limits obtained by analysis(AGA, WEAVER, KNOY, GILB) were compared with experimental results. The results estimated showed that the mixing limits of LPG/Air in proper conditions were found to vary with analysis and AGA is considered to be the most appropriate one.

  • PDF

발전용 가스엔진의 개발 및 연소특성에 관한 연구 (A Study on the Development and the Combustion Characteristics of a Stationary Gas Engine)

  • 김현규;우석근;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.128-139
    • /
    • 2000
  • Environmental concerns and shortage of petroleum have promoted considerable interest in the use of alternate fuels in stationary diesel engine. In this study, a heavy-duty, intercooler-turbocharged 6-cylinder stationary diesel engine was converted into stationary gas engine fueled with propane or natural gas for the cogeneration plants. One of the most important factors in the combustion features of a stationary gas engine is the fuel composition and operating parameters in terms of compression ratio, spark advance, and engine loads. Experiments with different fuel gas and load conditions were carried out with combustion pressure analysis and NOx measurement. Combustion analysis based on P-$\theta$ diagrams was also investigated by means of combustion duration and cycle variation. Compression ratio is 10.0 and ignition timing is set by using the gasoline setting as a base line and advanced toward BTDC. The results show that fuel composition and spark advance have dominant effects on combustion and NOx characteristics at operating conditions.

  • PDF