• Title/Summary/Keyword: Natural Fiber Reinforced Composite

Search Result 108, Processing Time 0.028 seconds

A Study on Vibration Intensity of Laminated Composite Plate (복합적층판의 진동인텐시티에 관한 연구)

  • Seo, Jin;Kim, Dong-Young;Hong, Do-Kwan;Choi, Seok-Chang;An, Chan-Woo;Han, Geun-Jo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.892-895
    • /
    • 2002
  • In this study, to grasp the effect of vibration intensity fur the laminated composite plate, the two-dimension plate was shaken by a harmonic point excitation with the natural frequency using the finite element method. As the result, it shows that the vibration intensity according to the change of angle-ply is various and it flows to the direction of length rather than width in the plate. Also this paper represents those results to the vector flow.

  • PDF

Vibration Control of a Flexible Cantilevers Beam with Added Mass

  • Kwon, Tae-Kyu;Park, Byeong-Yong;Lim, Suk-Jeong;Yun, Yeo-Hung;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.5-71
    • /
    • 2001
  • This paper presents the vibration control of a flexible intelligent beam with added mass. The materials which is a glass fiber reinforced(GFR) thermoplastic composite is employed to achieve vibration characteristics according to added mass induced end of composite beam. In the experiments of forced vibration control, the -controller are employed to achieve vibration suppression in forced vibration situations. Also, in the controller design, 1st and 2nd´s natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. By designing a controller using mu-synthesis, robust performance against measurement noise, various modeling.

  • PDF

Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review

  • Suriani, M.J.;Nik, W.B. Wan
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-89
    • /
    • 2017
  • One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

Determination of Degraded Fiber Properties of Laminated CFRP Flat Plates Using the Bivariate Gaussian Distribution Function (이변량 Gaussian 분포함수를 적용한 CFRP 적층 평판의 보강섬유 물성저하 규명)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.299-305
    • /
    • 2016
  • This paper presents a method to detect the fiber property variation of laminated CFRP plates using the bivariate Gaussian distribution function. Five unknown parameters are considered to determine the fiber damage distribution, which is a modified form of the bivariate Gaussian distribution function. To solve the inverse problem using the combined computational method, this study uses several natural frequencies and mode shapes in a structure as the measured data. The numerical examples show that the proposed technique is a feasible and practical method which can prove the location of a damaged region as well as inspect the distribution of deteriorated stiffness of CFRP plates for different fiber angles and layup sequences.

Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures (미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim Dae-Il;Chang Seung-Hwan
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, parametric study was carried out to design sandwich structures for EDM machines controlling stacking sequence, stacking thickness of composites and rib configuration. Sandwich structures which are dealt with in this paper are composed of fibre reinforced composite for skin material and foam or resin concrete for core materials. The sandwich column has cruciform rib to enhance bending stiffness of the structure and the bed has several vertical ribs to resist the normal forces and vibration. The design parameters such as rib thickness and stacking sequence were controlled to enhance the system robustness. Finite element analysis was also carried out to verify the variation of static and dynamic stiffness of the structures according to the variation of the parameters. Vibration tests were performed to verify the natural frequencies and damping ratios of the manufactured composite structures. The appropriate shape and configuration conditions for micro-EDM machine structures are proposed.

A Study on Standardization of Fracture Strength of Secondary Barrier of FSB in MARK-III LNG CCS using Weibull Distribution (Weibull 통계분석을 이용한 MARK-III LNG CCS의 2차 방벽 FSB 파단강도 표준화 연구)

  • Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.137-143
    • /
    • 2021
  • In this study, the fracture strength of Flexible Secondary Barrier (FSB) composites was standardized by conducting a distribution analysis of the fracture probability, considering that the fracture strength of FSB composites such as glass fiber reinforced composites is relatively large. As the mechanical performance of FSB composites varies with the fiber direction, 20 replicate uniaxial tensile tests were performed for different temperatures ranging from the ambient to cryogenic conditions, considering the actual operating environment of liquefied natural gas. For the probability statistical analysis, the Weibull distribution analysis derived from the weakest link theory was used, considering the large variance in the fracture strength and brittle fracture behavior. The results of the Weibull distribution analysis were used to calculate the standard fracture strength of the FSB composites for different fiber directions. The findings can help ensure the reliability of the FSB mechanical properties in different fiber directions in the design of the secondary barrier and structural analyses.

Vibration and Stability of Composite Thin-Walled Spinning Shaft (복합재료 회전축의 진동 특성 및 안정성 해석)

  • Yoon, Hyung-Won;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1083-1088
    • /
    • 2004
  • This paper deals with the vibration and stability of a circular cylindrical shaft, modeled as a tapered thin-walled composite beam and spinning with constant angular speed about its longitudinal axis, and subjected to an axial compressive force. Hamilton's principle and the assumed mode method are employed to derive the governing equations of motion. The resulting eigenvalue problem is analyzed, and the stability boundaries are presented for selected taper ratios and axial compressive force combinations. Taking into account the directionality property of fiber reinforced composite materials, it is shown that for a shaft featuring flapwise-chordwise-bending coupling, a dramatic enhancement of both the vibration and stability behavior can be reached. It is found that by the structural tailoring and tapering, bending natural frequencies, stiffness and stability region can be significantly increased over those of uniform shafts made of the same material. In addition, the particular case of a classical beam with internal damping effect is also included.

  • PDF

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

Finite Element Analysis on the Strength Safety of a Fuel Tank for Highly Compressed Gas Vehicle (초고압가스 차량용 연료탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.29-33
    • /
    • 2009
  • In this study, the strength safety of a composite fuel tank which is fabricated by an aluminum liner of Al6061-T6 materials and composite layers of carbon/epoxy-glass/epoxy composites has been analyzed by using a finite element analysis technique. In order to enhance the durability of the composite fuel tank, an autofrettage process was used and compressed natural gas was supplied to the prestressed fuel tank. The FEM computed results on the stress safety of autofrettaged gas tanks were compared with a criterion of design safety of US DOT-CFFC and Korean Standard. The FEM computed results indicated that the stress safety of autofrettaged fuels tanks shows instability at the dome zone and uniform stability at the parallel body, which provide an evaluation data for a strength safety of autofrettaged composite fuel tanks. The computed results show that the stress safety of 9.2 liter composite fuel tanks satisfied the safety criteria of four evaluation items, which are provided by US DOT-CFFC and KS and indicated a safe design.

  • PDF