• Title/Summary/Keyword: Natural Fiber Composite

Search Result 232, Processing Time 0.03 seconds

Interfacial Evaluation of Kenaf and Ramie Fibers/Epoxy Composites using Micromechanical Technique (Micromechanical 시험법을 이용한 Kenaf와 Ramie 섬유강화 에폭시 복합재료의 계면 물성 평가)

  • Son Tran Quang;Park Joung-Man;Hwang Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.92-95
    • /
    • 2004
  • Interfacial shear strength (IFSS) of environmentally- friend natural fiber reinforced polymer composites playa very important role in controlling the overall mechanical properties. In this work the IFSS of Ramie and Kenaf fibers/epoxy systems were evaluated using the combination of micromechanical technique, microdroplet test to find out an optimal condition in accordance with final purpose by comparing to each other. Clamping effect on fiber elongation was determined as well. In addition, the mechanical properties of the natural fibers were investigated using single fiber tensile test and analyzed statistically by both uni- and bimodal Weibull distributions. Microfailure modes of different natural fiber structures were observed using optical microscope.

  • PDF

Effect of Manufacturing Factors on Mechanical Properties of the Rice-husk Powder Composites (왕겨분말 복합재료의 기계적 특성에 미치는 제조인자의 영향)

  • Choi J.Y.;Wang Renliang;Yoon H.C.;Lim J.K.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.794-799
    • /
    • 2006
  • In recent years, the use of natural fiber as reinforcement in polymer composites to replace synthetic fiber such as glass fiber is receiving increasing attention. Because of increasing usage according to the high demand, the cost of thermoplastic has increased rapidly over the past decades. We used a thermoplastic polymer(polypropylene) as the matrix and a lignocellulosic material(rice-husk flour) as the reinforcement filler to prepare a particle-reinforced composite to examine the possibility of using lignocellulosic material as reinforcement filler and to determine data of test results for physical, mechanical and morphological properties of the composite according to the reinforcement filler content in respect to thermoplastic polymer, In this study, PLA/PP rice-husk fiber-reinforced thermoplastic composites that made by the hot press molding method according to appropriate manufacturing process was evaluated as mechanical properties.

Improvement of the mechanical performance and dyeing ability of bamboo fiber by atmospheric pressure air plasma treatment

  • Hoa, Ta Phuong;Chuong, Bui;Hung, Dang Viet;Tien, Nguyen Dung;Khanh, Vu Thi Homg
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.14-20
    • /
    • 2009
  • Atmospheric pressure air plasma was applied for treatment of different kinds of natural bamboo fiber to improve their mechanical properties and surface characteristics, which are suitable for adhesion and dyeing. The tensile strength and Young modulus of bamboo fiber were significantly improved; SEM and AFM study show that the surface of fiber became cleaner and rougher after plasma treatment. Plasma treatment caused the cracking, removing of the protective skin of alkali-untreated fiber and etching to form a cleaner and rougher surface. The dyeability of both groups of bamboo fiber which are used for composite and textile purposes is significantly enhanced after treatment.

  • PDF

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Bending Strength of Natural Woven Bamboo Fiber-reinforced Polymer Composites with Manufacturing Factors (직조된 대나무 자연섬유 복합재료의 제조인자에 따른 굽힘강도)

  • Song Jun-Hee;Lim Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.916-922
    • /
    • 2006
  • In recent years there has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. The purpose of this study is to determine the characteristic of bending strength on bamboo fiber reinforced polymer composites. The parameters of RTM process depend on the weight ratio of bamboo fiber and resin, the number of bamboo ply and amount of hardening agent. Mechanical properties was investigated for each process factor of polymer composites. Test result shows that bending strength was a maximum(approximately 85MPa) value when composite thickness was 6mm and weight ratio of resin was 13%.

Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement

  • Yas, M.H.;Garmsiri, K.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2010
  • Three dimensional free vibrations analysis of functionally graded fiber reinforced cylindrical shell is presented, using differential quadrature method (DQM). The cylindrical shell is assumed to have continuous grading of fiber volume fraction in the radial direction. Suitable displacement functions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical shell and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced cylinder due to the reduction in spatial mismatch of material properties and natural frequency.

Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

Trends and Perspective for Eco-friendly Composites for Next-generation Automobiles (차세대 자동차용 친환경 복합재료의 동향 및 전망)

  • Eunyoung Oh;Marcela Maria Godoy Zuniga;Jonghwan Suhr
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • As global issues and interest in the environment increase, the transition to eco-friendly materials is accelerating in the automobile industry. In the automotive industry, eco-friendly composite materials are mainly used in various interior and exterior components, reducing the reliance on traditional petroleum-based materials. In particular, natural fiber composites help reduce fuel consumption and greenhouse gas emissions by making vehicles lighter. Additionally, they boast superior thermal properties and durability compared to non-recyclable composite materials, making them suitable for automotive interior parts. Furthermore, reduced production costs and sustainability are key advantages of natural fiber composites. The eco-friendly composites market is expected to grow to $86.43 billion at a CAGR of 15.3% from 2022 to 2030, and the natural fiber composites market is predicted to grow at a CAGR of 5.3% from 2023 to 2028 to $424 million. In this review paper, we explore research trends in nextgeneration natural fiber composite materials for automobiles and their application in the actual automobile industry.

Optimal Shape Design of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 최적 형상설계)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. It is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to a egulation of $CO_2$ emission. Through understanding of a composite carbon fiber, and material characteristic of a composite carbon fiber is required in order for better application of a reduction of weight and an analysis of material characteristic. Herein, this study suggest the composite carbon fiber vessel applied to the characteristic of carbon fiber, and it decides the preliminary shape based on the test of material characteristic for ANG vessel applied to a composite carbon fiber, and its basic shape calculate through on the netting theory. Moreover, the detail shape design is analyzed by a finite element analysis, and in the stage of detail sahp design and analysis of stress was performed on the typical shape using a finite element analysis, and the result of preliminary design was verified.

탄소섬유 복합재료 보오링바의 Chatter 특성에 관한 연구

  • 김형철;김기수;함승덕;이대길;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.22-31
    • /
    • 1991
  • Machining with boring bars frequently induce chatter vibration because of the low stiffness and damping of cantilever shape of boring bars. To increase stiffness and damping, a carbon fiber epoxy composite boring bar was designed, manufactured and tested. The natural frequency of the carbon fiber epoxy composite boring bar in the free-free end condition was incerased more than 50% over that of the steel boring bar, and the damping of the carbon fiber epoxy composite boring bar was also increased 450%. The fundamental natural frequency of the carbon fiber epoxycomposite boring bar in the cantilever beam condition was found to be increased 20-30% over that of the steel boring bar in overhang length range 140-200mm. In machining S45C tapered workpieces, the limit of the overhang length of the steel boring bar was about 170mm in cutting speed 140m/min.