• Title/Summary/Keyword: Natural Cooling

Search Result 531, Processing Time 0.029 seconds

A Basic Study on the District Cooling System of LNG Cold Thermal Energy (LNG 냉열 에너지의 지역 냉방 시스템에 관한 기반 연구)

  • Kim Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.36-43
    • /
    • 2003
  • This paper provides the possibility of the district cooling system by using a LNG cold thermal energy. A liquefied natural gas provides a plenty of cooling source energy during a gasification of a liquefied natural gas. In recent, an ice thermal storage system is used for cooling a building, and a deep water source cooling system has been introduced as a district cooling system in which is used to cool the office towers and other large buildings in old and new downtown. LNG cooling energy refers to the reuse of a large body of naturally cold fluids as a heat sink for process and comfort space cooling as an alternative of conventional, refrigerant based cooling systems. Coincident with significant clean energy and operating cost savings, LNG cold energy cooling system offers radical reductions in air-borne pollutants and the release of environmentally harmful refrigerants in comparison to the conventional air-conditioning system. This study provides useful information on the basic design concepts, environmental considerations and performance related to the application of LNG cold thermal energy.

  • PDF

Study on the Thermal Behavior of Immersion Cooled LED Lighting Engines (담금 냉각되는 LED 조명엔진의 열특성에 대한 연구)

  • Kim, Kyoung Joon
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.87-92
    • /
    • 2014
  • This study is aimed at investigating the thermal behavior of immersion-cooled high power LED lighting engines. 3D CFD models have been generated for the numerical analysis. Five cases in terms of the configuration of LED chips have been explored for various passive cooling conditions of the lighting engine, i.e., the natural air convection with a lens, the natural air convection without a lens, the deionized water-immersion cooling condition with a lens. The numerical study reveals that the deionized water-immersion cooled lighting engine has nearly twice better thermal performance than the natural air convection cooled lighting engine containing a lens. The investigation has also demonstrated that the four chips configuration has the better thermal performance than the single chip configuration.

Studies on the Forcing of Easter lily (Lilium longiflorum Thunb. cv. Georgia) (Easter lily의 촉성재배(促成栽培)에 관(關)한 연구(硏究))

  • Suh, Young Kyo
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.83-89
    • /
    • 1974
  • Georgia lily bulbs from experimental plot of the Chungnam National University, weighting 14.1~18.0gm, were used for this study. These bulbs were treated for the natural cooling at cold frame for 90 days and refrigerating at $8^{\circ}C{\pm}1^{\circ}C$ for 50~90 days. And then, these bulbs were planted in the vinyl house. The results of forcing for each treatments were as follow; 1) The natural cooling treatment gave 3 days ealier flowering than the refrigeratings. 2) In the blooming rate, the height of plant, and the size of flower, all refrigerating treatments were bigger than the natural cooling. 3) Among the refrigerating treatments, the best results were attain in the 50 and 60 days treatments than others. 4) Therefore, it is recommended that Georgia lily, as the next crop after Chrysanthemum ect, can be forced effectively by refrigerating treatment at $8^{\circ}C$ for 50~60 days, if these bulbs can be planted until the end of December.

  • PDF

A Preliminary Assessment on ERVC Performance Depending on Insulation Conditions (단열재 조건에 따른 원자로용기 외벽냉각 성능 예비분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Lots of researches have been conducted on in-vessel retention (IVR) to prevent or mitigate severe accident in nuclear power plants. Various methodologies were proposed and the external reactor vessel cooling was selected as a part of promising IVR strategy. In this study, the strategy is strengthened by enhancing the natural circulation performance through the adoption of insulation in the reactor cavity. A thermal analysis was carried out based on an assumed accident scenario and its results were used as boundary conditions for subsequent seven flow analysis cases. By comparing the natural circulation performance, effects of annular gaps and insulation shapes on the mass flow rate and flow velocity were quantified. The improvement in cooling performance can be reflected in actual design via detailed assessment.

Two Dimensional Analysis for the External Vessel Cooling Experiment

  • Yoon, Ho-Jun;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.410-423
    • /
    • 2000
  • A two-dimensional numerical model is developed and applied to the LAVA-EXV tests performed at the Korea Atomic Energy Research Institute (KAERI) to investigate the external cooling effect on the thermal margin to failure of a reactor pressure vessel (RPV) during a severe accident. The computational program was written to predict the temperature profile of a two-dimensional spherical vessel segment accounting for the conjugate heat transfer mechanisms of conduction through the debris and the vessel, natural convection within the molten debris pool, and the possible ablation of the vessel wall in contact with the high temperature melt. Results of the sensitivity analysis and comparison with the LAVA-EXV test data indicated that the developed computational tool carries a high potential for simulating the thermal behavior of the RPV during a core melt relocation accident. It is concluded that the main factors affecting the RPV failure are the natural convection within the debris pool and the ablation of the metal vessel, The simplistic natural convection model adopted in the computational program partly made up for the absence of the mechanistic momentum consideration in this study. Uncertainties in the prediction will be reduced when the natural convection and ablation phenomena are more rigorously dealt with in the code, and if more accurate initial and time-dependent conditions are supplied from the test in terms of material composition and its associated thermophysical properties.

  • PDF

Sensitivity analysis of numerical schemes in natural cooling flows for low power research reactors

  • Karami, Imaneh;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.255-275
    • /
    • 2017
  • The advantages of using natural circulation (NC) as a cooling system, has prompted the worldwide development to investigate this phenomenon more than before. The interesting application of the NC in low power experimental facilities and research reactors, highlights the obligation of study in these laminar flows. The inherent oscillations of NC between hot source and cold sink in low Grashof numbers necessitates stability analysis of cooling flow with experimental or numerical schemes. For this type of analysis, numerical methods could be implemented to desired mass, momentum and energy equations as an efficient instrument for predicting the behavior of the flow field. In this work, using the explicit, implicit and Crank-Nicolson methods, the fluid flow parameters in a natural circulation experimental test loop are obtained and the sensitivity of solving approaches are discussed. In this way, at first, the steady state and transient results from explicit are obtained and compared with experimental data. The implicit and crank-Nicolson scheme is investigated in next steps and in subsequent this research is focused on the numerical aspects of instability prediction for these schemes. In the following, the assessment of the flow behavior with coarse and fine mesh sizes and time-steps has been reported and the numerical schemes convergence are compared. For more detail research, the natural circulation of fluid was modeled by ANSYS-CFX software and results for the experimental loop are shown. Finally, the stability map for rectangular closed loop was obtained with employing the Nyquist criterion.

Effects of decay heat and cooling condition on the reactor pool natural circulation under RVACS operation in a water 2-D slab model

  • Min Ho Lee ;Dong Wook Jerng ;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1821-1829
    • /
    • 2023
  • The temperature distribution of the reactor pool under natural circulation induced by the RVACS operation was experimentally studied. According to the Bo' based similarity law, which could reproduce the temperature distribution of the working fluid under natural circulation, SINCRO-2D facility was designed based on the PGSFR. It was reduced to 1 : 25 in length scale, having water as a simulant of the sodium, which is the original working fluid. In general, temperature was stratified, however, effect of the natural circulation flow could be observed by the entrainment of the stratified temperature. Relative cooling contribution of the upper plenum (narrow gap) and lower plenum was approximately 0.2 and 0.8, respectively. In the range of decay heat from 0.2% to 1.0%, only the magnitude of the temperature was changed, while the normalized temperature maintained. Boundary temperature distribution change made a global temperature offset of the pool, without a significant local change. Therefore, the decay heat and cooling boundary condition had no significant effect on temperature distribution characteristics of the pool within the given range of the decay heat and boundary temperature distribution.

Numerical Evaluation of the Cooling Performance of a Core Catcher Test Facility

  • Lee, Dong Hun;Park, Ik Kyu;Yoon, Han Young;Ha, Kwang Soon;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • A core catcher is considered as a promising engineered system to stabilize the molten corium in the containment during a postulated severe accident in a nuclear power plant. Conceptually, the core catcher consists of a carbon steel body, sacrificial material, protection material, and engineered cooling channel. The cooling capacity of the engineered cooling channel should be guaranteed to remove the decay heat of the molten corium. The flow in ex-vessel core catcher is a combined problem of a two-phase flow in the engineered cooling channel and a single-phase natural circulation in the whole core catcher system. In this study, the analysis of the test facility for the core catcher using the CUPID code, which is a three-dimensional thermal-hydraulic code for the simulation of two-phase flows, was carried out to evaluate its cooling capacity.

Effect of Biocide (NaOCl) in Industrial Cooling Water on Biofilm Formation and Metal Corrosion. (공장냉각수에서 Biocide (NaOCl)가 생물막 형성 및 금속 부식에 미치는 영향)

  • 강용호;박대규
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.86-90
    • /
    • 2002
  • Cooling water sampled at Pohang Steel Company, Korea, was used to study the effect of biocide (NaOCl) on biofilm formation and metal corrosion. Planktonic microorganisms were killed in the presence of biocide (0.2% NaOCl) within 1.5 h, but not sessile microorganisms in biofilms even after one week. Black color of biofilms, possibly due to the activity of sulfate reducing bacteria, were made with the natural cooling waters, while orange color of biofilms were formed when cooling waters were autoclaved or when 0.2% NaOCl was added to the natural cooling waters. Microbially influenced corrosion rate in black color of biofilms was 2.3 fold higher than that in orange color of biofilms.

Analysis of Two Phase Natural Circulation Flow in the Reactor Cavity under External Vessel Cooling (원자로용기 외벽냉각시 원자로공동에서 이상유동 자연순환 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2141-2145
    • /
    • 2004
  • As part of study on thermal hydraulic behavior in the reactor cavity under external vessel cooling in the APR (Advanced Power Reactor) 1400, one dimensional two phase flow of steady state in the reactor cavity have been analyzed to investigate a coolant circulation mass flow rate in the annulus region between the reactor vessel and the insulation material using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that a two phase natural circulation flow of 300 - 600 kg/s is generated in the annulus region between the reactor vessel and the insulation material when the external vessel cooling has been applied in the APR 1400. An increase in the heat flux of the inner vessel leads to an increase of the coolant mass flow rate. An increase in the coolant outlet area leads to an increase in the coolant circulation mass flow rate, but the coolant inlet area does not effective on the coolant circulation mass flow rate. The change of the lower coolant outlet to a lower position affects the coolant circulation mass flow rate, but the variation trend is not consistent.

  • PDF