• 제목/요약/키워드: Natural Cooling

검색결과 535건 처리시간 0.029초

SF6 가스를 충전한 변압기의 자연순환 냉각시스템의 성능시뮬레이션 (Performance Simulation of Natural Circulating Cooling System of SF6 Gas Charged Transformer)

  • 최영돈;허창수;김진봉
    • 설비공학논문집
    • /
    • 제6권1호
    • /
    • pp.54-65
    • /
    • 1994
  • Performance of naturally circulating cooling system of $SF_6$ gas charged transformer was simulated and the variations of gas flow rate, maximum coil temperature, gas temperature and cooling air temperature were investigated with respect to the height of radiator, interplates distance and heat generation rate at core. The results show that the height of radiator most significantly affects the performance of natural circulating cooling system of transformer.

  • PDF

히트싱크의 핀 배열에 따른 냉각특성에 관한 실험적 연구 (An Experimental Study on Cooling Characteristic according to Fin Array of Aluminum Heat Sink)

  • 윤성운;김재열;고가진
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.138-143
    • /
    • 2018
  • In general, the operating temperature of electronic equipment is closely related to product life and reliability, and it is recognized that effectively cooling the parts is an important problem. In this paper, an experimental study on the cooling characteristic according to the pin array of the heat sink is conducted. The experiment on the heat sink was based on the natural convection and temperature distribution changes. The experimental results indicate that the pin array of the heat sink has an effect on the thermoelectric module's cooling characteristic.

상부가 개방된 수직 캐비티내에 장착된 불연속 균일 발열체의 자연대류 냉각 (Natural convection cooling of discrete heaters with same heat generation in a vertical open top cavity)

  • 유갑종;추홍록;김병하;최병철
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 1997
  • Natural convection cooling of discrete heaters located in a two-dimensional vertical open top cavity is investigated experimentally. The five discrete heaters with same heat generation are located on the wall of the cavity. The heaters are arranged in two configurations; flush-mounted on a vertical wall and protruding from the wall about 4.5 mm. The materials used for the vertical walls are copper and epoxy-resin, and air is used as the cooling fluid. The temperature and flow fields in the cavity were visualized by means of Mach-Zehnder interferometer and smoke-method. Also, local temperature measurements are made along the vertical wall. Results are obtained for cavity aspect ratios of 4.6, 7.5 and 9.5 and modified Rayleigh numbers ranging from 10$^{3}$ to 10$^{6}$ . Results indicate that the cooling efficiency for the copper wall is superior to that of the epoxy-resin. For the epoxy-resin wall, the protrusion of the heaters plays a role in decreasing the heat transfer performance. The location of maximum temperature is significantly influenced by the wall materials and heater configurations. Correlations relating the Nusselt number to the modified Rayleigh number are proposed.

고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구 (Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module)

  • 도규형;김태훈;한용식
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

밀폐된 공간 내 공랭식 PEMFC의 자연대류 열전달에 대한 실험적 연구 (An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure)

  • 이준식;김승곤;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.42-48
    • /
    • 2016
  • This study presents an experiment investigation on natural convection heat transfer of air-cooling Proton exchange membrane fuel cells (PEMFCs) in a enclosure system for unmanned aerial vehicles (UAVs). Considered are replacing fuel cell stack with Aluminum block for heat generating inside a enclosure chamber. The volume ratio of fuel cell stack and chamber for simulation to the actual size of aerial vehicle is 1 to 15. The parameters considered for experimental study are the environmental temperature range from $25^{\circ}C$ to $-60^{\circ}C$ and the block heat input of 10 W, 20 W and 30 W. Effect of the thermal conductivity of the block and power level on heat transfer in the chamber are investigated. Experimental results illustrate the temperature rise at various locations inside the chamber as dependent upon heat input of fuel cell stack and environmental temperature. From the results, dimensionless correlation in natural convection was proposed with Nusselt number and Rayleigh number for designing air-cooling PEMFC powered high altitude long endurance (HALE) UAV.

고집광 태양전지 모듈의 냉각시스템 개발 (Development of a Cooling System for a Concentrating Photovoltaic Module)

  • 김태훈;도규형;최병일;한용식;김명배
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.551-560
    • /
    • 2011
  • 본 연구에서는 열분산기 및 자연대류 히트 싱크로 구성된 집광형 태양전지 모듈용 냉각 장치를 제안하고자 한다. 이를 위해, 기존 연구자들의 해석적 연구를 바탕으로 집광형 태양전지 모듈용 열분산기 및 자연대류 히트 싱크를 설계하였다. 제안된 냉각 장치의 성능을 평가하기 위하여, 발열량과 수직 기준 경사각 변화에 따른 열성능 평가실험을 수행하였다. 실험결과로부터, 제안된 냉각 장치가 집광형 태양전지 모듈의 설계 조건을 만족하는 것을 확인하였다. 마지막으로 발열량과 수직기준 경사각 변화에 따른 자연대류 히트 싱크의 열성능을 예측할 수 있는 상관식을 제시하였다.

The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect

  • Ke, Shitang;Yu, Wei;Ge, Yaojun;Zhao, in;Cao, Shuyang
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.1-17
    • /
    • 2019
  • Internal ring beams are primary components of new ring-stiffened cooling towers. In this study, numerical simulation of the internal flow field of a cooling tower with three ring beams under wind-thermal coupling effect is performed. The studied cooling tower is a 220-m super-large hyperbolic indirect natural draft cooling tower that is under construction in China and will be the World's highest cooling tower, the influence of peripheral radiators in operating cooling tower is also considered. Based on the simulation, the three-dimensional effect and distribution pattern of the wind loads on inner surface of the cooling tower is summarized, the average wind pressure distributions on the inner surface before and after the addition of the ring beams are analyzed, and the influence pattern of ring beams on the internal pressure coefficient value is derived. The action mechanisms behind the air flows inside the tower are compared. In addition, the effects of internal ring beams on temperature field characteristics, turbulence kinetic energy distribution, and wind resistance are analyzed. Finally, the internal pressure coefficients are suggested for ring-stiffened cooling towers under wind-thermal coupling effect. The study shows that the influence of internal stiffening ring beams on the internal pressure and flow of cooling towers should not be ignored, and the wind-thermal coupling effect should also be considered in the numerical simulation of cooling tower flow fields. The primary conclusions presented in this paper offer references for determining the internal suction of such ring-stiffened cooling towers.

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

Cooling Tower System 진동 진단 (The Diagnosis of Cooling Tower System)

  • 이선휘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1090-1094
    • /
    • 2007
  • The aim of this study is to estimate the cause of Cooling Tower vibration and eliminate the faults of fan with high vibration in spite of overhaul. The cause of high vibration was that the natural frequency of fan blade coincide with second blade pass frequency. To achieve reduction of Cooling Tower vibration, change motor speed from 1784rpm to 1714rpm, and then the vibration has reduced conspicuously.

  • PDF

고주파 모터 내장형 주축의 냉각에 따른 열특성 해석 (Analysis oil the Thermal Characteristics of the Spindle with High Frequency Motor according to the Cooling Methods)

  • 김수태;최대봉;조환석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.969-974
    • /
    • 2002
  • Thermal characteristics according to the cooling methods are studied for the three type spindles with high frequency motor. For the analysis, three dimensional mode]s are built considering heat transfer characteristics such as natural and force convection coefficients. Unsteady-state temperature distributions and thermal deformations according to the cooling conditions are analyzed by using the finite element method.

  • PDF