• Title/Summary/Keyword: Native Function

Search Result 253, Processing Time 0.024 seconds

Effect of Dietary Intake of Ultra-fine or Nano-Scale Pulverized Cornstarch on the Growing Performance and Gut Function in Rats (Nano-Scale Pulverizer (NSP)와 Ultra-Fine Pulverizer (UFP)로 물리적 변성된 옥수수전분 섭취가 흰쥐의 성장능력 및 장기능에 미치는 영향)

  • Lee, Hye-Sung;Ju, Da-Nim;Kim, Bo-Ram;Kim, Sun-Hee;Han, Myung-Ryun;Kim, Myung-Hwan;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.42 no.8
    • /
    • pp.740-749
    • /
    • 2009
  • The objectives of this study was to determine whether a new physically modified cornstarch by ultra-fine- or nanoscale pulverizer to reduce particle size offers better bioactive function than native cornstarch in weanling Sprague-Dawley rats. Male weaning Sprague-Dawley rats were fed diets containing native cornstarch (NAC), ultra fine pulverized cornstarch (UFC) or nano-scale pulverized cornstarch (NSC) for 4 weeks. In vitro rate of starch hydrolysis, growth performance, organ weight, intestine length intestinal proliferation and the fermentation by Bifidobacterium of rat cecum were evaluated. The diet with reduced particle size (UFC or NSC) significantly increased body weight gain and organ weight. Feed efficiency was increased in NSC fed rats and was not affected in UFC fed rats. Intestinal proliferation was decreased in NSC group. Reduction of particle size also increased cecal short chain fatty acid concentration and the growth and acidifying activity of Bifidobacterium. It is concluded that a reduction of particle size of starch granules by physically modification may increase growing performance and gut function.

EXPERIMENTAL STUDY OF PERIPHERAL NERVE REGENERATION BY USING NON-TUBULAR NATURAL CELLULOSE MEMBRANE NERVE CONDUIT (비관형 천연 셀룰로오스막 도관을 이용한 말초신경 재생에 대한 실험적 연구)

  • Kim, Soung-Min;Lee, Jong-Ho;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.295-307
    • /
    • 2006
  • Styela clava, called non-native tunicate or sea squirt, is habitat which include bays and harbors in Korea and several sites in the sea faced world. We fabricate cellulose membrane nerve conduit (CMNC) from this native sea squirt skin, and evaluate the capacity of promoting peripheral nerve regeneration in the rat sciatic nerve defect model. After processing the pure cellulose membrane from the sea squirt skin as we already published before, CMNC was designed as a non-tubular sheet with 14 mm length and 4 mm width. Total eleven male Spraque-Dawley rats (12 weeks, weighing 250 to 300g) were divided into sham group (n=2), silicone tube grafted control group (n=3) and experimental group (n=6). Each CMNC grafted nerve was evaluated after 4, 8 and 12 weeks in the experimental group, and after 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were all examined using image analyzer and electromicroscopic methods in the all groups. The regenerated axon and nerve sheath were found only in the inner surface of the CMNC after 4 weeks and became more thicker after 8 and 12 weeks. In the TEM study, CMNC grafted group showed more abundant organized myelinated nerve fibers with thickened extracellular matrix than silicone conduit grafted group after 12 weeks. The sciatic function index (SFI) and ankle stance angle (ASA) in the functional evaluation were $-47.2{\pm}3.9$, $35.5^{\circ}{\pm}4.9^{\circ}$ in CMNC grafted group (n=2) and $-80.4{\pm}7.4$, $29.2^{\circ}{\pm}5.3^{\circ}$ in silicone conduit grafted group (n=3), respectively. And the myelinated axon was 41.59% in CMNC group and 9.51% in silicone conduit group to the sham group. The development of a bioactive CMNC to replace autogenous nerve grafts offers a potential and available approach to improved peripheral nerve regeneration. As we already published before, small peptide fragment derived from the basement membrane matrix proteins of squirt skin, which is a kind of anchoring protein composed of glycocalyx, induced the effective axonal regeneration with rapid growth of Schwann cells beneath the inner surface of CMNC. So the possibilities of clinical application as a peripheral nerve regeneration will be able to be suggested.

Comparative Study on Growth Patterns of 25 Commercial Strains of Korean Native Chicken

  • Manjula, Prabuddha;Park, Hee-Bok;Yoo, Jaehong;Wickramasuriya, Samiru;Seo, Dong-Won;Choi, Nu-Ri;Kim, Chong Dae;Kang, Bo-Seok;Oh, Ki-Seok;Sohn, Sea-Hwan;Heo, Jung-Min;Lee, Jun-Heon
    • Korean Journal of Poultry Science
    • /
    • v.43 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • Prediction of growth patterns of commercial chicken strains is important. It can provide visual assessment of growth as function of time and prediction body weight (BW) at a specific age. The aim of current study is to compare the three nonlinear functions (i.e., Logistic, Gompertz, and von Betalanffy) for modeling the growth of twenty five commercial Korean native chicken (KNC) strains reared under a battery cage system until 32 weeks of age and to evaluate the three models with regard to their ability to describe the relationship between BW and age. A clear difference in growth pattern among 25 strains were observed and classified in to the groups according to their growth patterns. The highest and lowest estimated values for asymptotic body weight (C) for 3H and 5W were given by von Bertalanffy and Logistic model 4629.7 g for 2197.8 g respectively. The highest estimated parameter for maturating rate (b) was given by Logistic model 0.249 corresponds to the 2F and lowest in von Bertalanffy model 0.094 for 4Y. According to the coefficient of determination ($R^2$) and mean square of error (MSE), Gompertz and von Bertalanffy models were suitable to describe the growth of Korean native chicken. Moreover, von Bertalannfy model was well described the most of KNC growth with biologically meaningful parameter compared to Gompertz model.

Immunohistochemical studies on the relationship between pineal body and superior cervical ganglia of the Korean native goat (한국재래산양 송과체와 앞쪽목신경절의 관계규명을 위한 면역조직화학적 연구)

  • Lee, Heungshik S.;Lee, In-Se;Song, Seung-hoon;Yoon, Sung-tae;Hwang, In-koo;Lee, Choong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.197-211
    • /
    • 2000
  • The pineal body have been known to be affected by superior cervical ganglia, and most of its nerve fibers containing peptidergic neurotransmitters have been considered to be originated from this ganglia. To confirm this relationships, some peptidergic neurotransmitters were identified in both of pineal body and superior cervical ganglia of the Korean native goat, which were divided into two group; breeding season and non-breeding season. The localizations of two catecholamine-synthesizing enzymes; tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH), were investigated by immunohistochemistry in the superior cervical ganglia and the pineal body of adult Korean native goats. Substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and galanin (GAL) were also identified in these organs by immunohistochemical and double immunofluorescent methods. In superior cervical ganglia, immunoreactivities for TH and DBH were confirmed in the same ganglion cells. The immunoreactivites for SP, VIP(only in male), NPY and GAL were identified in both of ganglion cell bodies and nerve fibers in the ganglia. CGRP immunoreactivity, however, was observed only in nerve fibers. Most NPY- and VIP-immunoreactive(IR) ganglion cells also contained TH. SP and TH were colocalized in the cell bodies, but not in the nerve fibers. TH immunoreactivity was shown in almost all of ganglion cells in the superior cervical ganglia. The immunoreactivity for NPY had some seasonal variation and was stronger in breeding season than in non-breeding season. In pineal body, lots of TH-IR fibers were observed throughout the parenchyma including the pineal stalk and most of them also contained DBH. SP- and NPY-IR fibers were also immunostained with TH or DBH. But a few SP- and NPY-IR fibers were not colocalized with TH or DBH. Exceptionally, a bipolar neuron-like cell was observed to be immunostained with NPY in the pineal body. A few CGRP and GAL-IR fibers were observed, while VIP-IR fibers were not present. It is concluded that most TH- and DBH-IR fibers as well as the peptidergic immunoreactive fibers of the pineal body might be originated from the superior cervical ganglia. Some peptidergic immunoreactive fibers, however, might be come from other regions of brain. We also suggest that NPY in pineal body plays a important role for pineal function. The seasonal variation of NPY immunoreactivity indicates that the synthesis and use of NPY may be different between in breeding and non-breeding seasons.

  • PDF

Light and Electron Microscopical Changes of Corpus Luteum during the Course of Pregnancy in Korean Native Cows (한우의 임신경과에 따른 황체조직의 광학 및 전자현미경적 변화)

  • Pyo, Byong-min;Koh, Phil-ok;Yang, Je-hoon;Won, Chung-kil;Cho, Gyu-wan;Kang, Chung-boo;Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.349-359
    • /
    • 2003
  • Corpus luteum (CL) is the primary productive organ of progesterone in pregnant cows. Progesterone levels in bovine plasma depend on the volume, weight and shape of the CL. Progesterone productions during the late stages of gestation occur both in the CL and placenta, and placentas producted more progesterone than CL on progesterone prcduction. Because division of progesterone production of these two organs is impoxxible, the CL function can not be determined by plasma progesterone levels following gestation stages. This study was carried out to evaluate histological findings on the CL spurium and CL verum, and also on the CL following the pregnant stages by histological and immunohistochemical and electron microscopical methods and then we expect to assume the functions of CL by histological findings. 1. Proliferations of luteal cells occur by day 120 of gestation, vessel hyperplasia occur by day 90 of gestation, and the walls and lumens of vessels developed by day 120 of pregnancy. 2. Sizes of CL cells increased to maximum around day 200 of gestation and similarly maintained by day 240. So these findings indicated that the function of Cl is most active around day 200 of gestation. 3. On parturation day, the number and size of luteal cells were maintained but stain intensity of the luteal cells and vessels are declined or disappeared, and fibrosis of luteal cells increased, and the vessel lumens are emptied. These findings indicate that CL is inactive. 4. In immunohistochemical findings, proliferative positive cells by PCNA antibody appeared more in number during early stages of gestation but appeared less following course of pregnant stages and not nearly appeared on day 120 of gestation. Apoptotic positive cells by TUNEL methods not nearly appeared on the early pregnant stages and a few appeared at late pregnant stages. So developments of CL proceed until day 120 of gestation and regression of CL was occurred by transform of luteal cells into fibrocytes than by luteal cell apoptosis. 5. In electron microscopical findings, the size of luteal cells increased more in CL verum than in CL spurium. During gestation stages, the size of luteal cells increased, mitochondria in the luteal cell cytoplasms densely and abundantly developed and also swelled mitochondria increased. The interspace of luteal cells are also dilated, transformation of luteal cells into fibrocytes are more number. The lumens and walls of peripheral capillaries of large luteal cells more broadened and thickened, and transformation of large and small luteal cells to fibrocytes are increased. The above findings suggest that function of pregnant CL more developed by day 120 of gestation and are most active around day 200 of gestation and similarly maintained by day 240 and are promptly regressed on paturation day.

Ig G fusion 단백질을 사용한 리간드-수용체의 상호작용

  • 천혜경
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.143-145
    • /
    • 1994
  • Chimeric fusion proteins involving IgG have proven valuable in studying protein-protein interactions and may possess therapeutic applications as well. For example, three receptor subtypes for the natriuretic peptides, when fused to the Fc portion of human IgG ${\gamma}$ chain, were quantitatively and qualitatively indistinguishable from the native receptor, thus allowing detailed structure-function studies of the receptor. In an attempt to block human immunodeficiency virus infectivity with soluble derivatives of CD4, a CD4/IgG Fc chimeric molecule was shown to increase the plasma half life of soluble CD4 and possessed the added advantage of IgG Fc-mediated placental transfer. In the case of the KGFR, this approach provided a framework for dissection of its ligand binding domains and made it possible to demonstrate that high affinity binding sites for two ligands, aFGF and KGF, reside within different receptor Ig-like domains. Chimeric molecules fused to immunoglobulins would have the advantages of secretion from transfected cells as well as detection and purification from medium utilizing Staphylococcus aureus Protein A. In addition, where highly related receptors make their discrimination very hard due to the difficulties in generating specific immunochemical probes, IgG fusion protein with tailor-made specificities confers particular advantages to elucidate patterns of receptor distribution and expression. The approach described here may have general applications in defining ligand-receptor interactions as well as searching for specific agonists and antagonists of receptor function.

  • PDF

Recent Applications of Polymeric Biomaterials and Stem Cells in Tissue Engineering and Regenerative Medicine (고분자 생체재료와 줄기세포를 이용한 조직공학과 재생의학의 최신 동향)

  • Lee, Sang Jin;Yoo, James J.;Atala, Anthony
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.113-128
    • /
    • 2014
  • Tissue engineering and regenerative medicine strategies could offer new hope for patients with serious tissue injuries or end-stage organ failure. Scientists are now applying the principles of cell transplantation, material science, and engineering to create biological substitutes that can restore and maintain normal function in diseased or injured tissues/organs. Specifically, creation of engineered tissue construct requires a polymeric biomaterial scaffold that serves as a cell carrier, which would provide structural support until native tissue forms in vivo. Even though the requirements for scaffolds may be different depending on the target applications, a general function of scaffolds that need to be fulfilled is biodegradability, biological and mechanical properties, and temporal structural integrity. The scaffold's internal architecture should also enhance the permeability of nutrients and neovascularization. In addition, the stem cell field is advancing, and new discoveries in tissue engineering and regenerative medicine will lead to new therapeutic strategies. Although use of stem cells is still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This review discusses these tissue engineering and regenerative medicine strategies for various tissues and organs.

Correlations between Heterozygosity at Microsatellite Loci, Mean d2 and Body Weight in a Chinese Native Chicken

  • Liu, G.Q.;Jiang, X.P.;Wang, J.Y.;Wang, Z.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1671-1677
    • /
    • 2006
  • A total of two hundred twenty eight half-sib chickens were scored for allele size at 20 microsatellite loci to estimate individual heterozygosity and mean $d^2$. The averages of microsatellite heterozygosity, allele per locus and mean $d^2$ were 0.39, 3.6 and 49, respectively. The body weight was measured biweekly from birth to twelve weeks of age. Gompertz function was assumed to simulate body weight and to estimate the growth model parameters. Due to sex effect on body weight, the regression of body weight on heterozygosity as well as on mean $d^2$ in males and females was analyzed separately in the present study. Positive correlations were found between microsatellite heterozygosity and body weight in males and females (p<0.05). Positive correlation also observed between individual heterozygosity and simulated maximum daily gain estimated from Gompertz function in female chickens (p<0.05). There were no significant correlations between mean $d^2$ and body weight. The results suggest that local effect hypothesis could explain the correlations between heterozygosity and fitness-related traits in the domesticated chicken population, rather than the general effect hypothesis does.

Content Validity of a Korean-Translated Version of a Fullerton Advanced Balance Scale: A Pilot Study

  • Kim, Gyoung-mo
    • Physical Therapy Korea
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2015
  • The purpose of this study were to translate the Fullerton Advanced Balance (FAB) scale into Korean and to verify the content validity by utilizing a back-translation method with a view to assessing balance function and the risk of falling in a clinical research setting. This research was conducted in six steps. First, three Korean physical therapists translated the FAB scale into Korean. Second, two bilingual professors of physical therapy and a physical therapist evaluated translation conformity of Korean-translated FAB scale. In the third and fourth steps, twelve physical therapists evaluated the degree of translation comprehension, and a translator back-translated the Korean FAB scale into the original language. Fifth, a bilingual professor of physical therapy and two native speakers evaluated the technical and conceptual equivalence between the original and translation versions. In this process, inappropriate translated items were revised using recommended substitute words or sentences, and all items were evaluated on the basis of three points or more on a rating scale in terms of translation comprehension, and the technical and conceptual equivalence of the back-translation. In the sixth and last step, the translation verification committee completed the final Korean version. The above process indicated that the content validity of the Korean-translated FAB scale was established by means of systematic translation methods, and it can therefore be used to assess balance function and the risk of falls in a clinical research setting.

Molecular Chaperones in Protein Quality Control

  • Lee, Suk-Yeong;Tsai, Francis T.F.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.259-265
    • /
    • 2005
  • Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones re a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more 'conventional' chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.