• Title/Summary/Keyword: Native Function

Search Result 253, Processing Time 0.024 seconds

Chemotaxonomic Significance of Taxifolin-3-O-Arabinopyranoside in Rhododendron Species Native to Korea

  • Kim, TaeHee;Kwon, Ye Eun;Park, Sun Min;Kim, Min Seok;Jeong, Young Hwan;Park, Se Yeong;Bae, Young-Soo;Cheong, Eun Ju;He, Yi-Chang;Gong, Chun;Gao, Wei;Kim, Hee Kyu;Ham, Yeon Ho;Kim, Jin-Kyu;Choi, Sun Eun
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.3
    • /
    • pp.159-173
    • /
    • 2022
  • Genus of Rhododendron has been used in traditional medicine since ancient times and is known to be effective in immune function, inflammation, and cold symptoms. And the reason for this activity is the flavanonol type among flavonoids in the genus of Rhododendron. Among the flavanonol types, Taxifolin-3-O-arabinopyranoside was isolated from the root of native R. mucronulatum in Korea, and the structure was finally identified through HPLC, LC-MS/MS, 1H-NMR, and 13C-NMR. Taxifolin-3-O-arabinopyranoside is a compound mainly found in R. mucronulatum, a representative species of the genus of Rhododendron, and exhibits antioxidant, anti-inflammatory, and anti-atopic activities. In this study, Taxifolin-3-O-arabinopyranoside was chemotaxonomic significant in 5 species of the genus Rhododendron native to Korea (R. mucronulatum, R. mucronulatum var. ciliatum, R. schlippenbachii, R. yedoense var. Poukhanense, R. japonicum for. Flavum). Compared with the existing literature, Taxifolin-3-O-arabinopyranoside was identified for the first time in 4 species of Rhododendron except for the R. mucronulatum.

Quality Properties and Flavor-Related Components of Beef Longissimus Lumborum Muscle from Four Korean Native Cattle Breeds

  • Van-Ba Hoa;Dong-Gyun Kim;Dong-Heon Song;Ji-Hun Ko;Hyun-Wook Kim;In-Seon Bae;Yun-Seok Kim;Soo-Hyun Cho
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.832-848
    • /
    • 2024
  • This study was carried out to assess the quality properties, components associated with taste and aroma of beef as a function of breed. For this purpose, steers from four Korean native cattle breeds: Hanwoo (n=10), Chikso (n=10), black Hanwoo (n=12, BHW) and Jeju black cattle (n=12, JBC) were used. The steers all were raised under identical conditions and finished at a similar age of around 30-months old. Following 24 h of slaughter, all longissimus lumborum muscles were collected and used for analysis of meat quality, fatty acids, and flavor-related components (metabolic compounds, free amino acids, and aroma volatiles). The Hanwoo presented a significantly higher intramuscular fat content (IMF, 22.85%) than the BHW (11.78%), Chikso (9.25%), and JBC (9.14%; p<0.05). The meat of Hanwoo breed showed lighter and redder color, and lower shear force value (p<0.05). The JBC presented a "healthier" fatty acid profiles as it had a higher total unsaturated fatty acids content (p<0.05). With regard to flavorrelated components, Hanwoo also had higher total contents of free amino acids and metabolites associated with umami and sweet tastes, and fat-derived volatile compounds (aldehydes, alcohols, and ketones) associated with fatty aroma. It may be concluded that there was a considerable difference in the meat quality properties among breeds. The variations of IMF content and flavor-related components may be the main factors contributing to the typical flavors of beef among the four Korean native cattle breeds.

Effects of Plasma Lipoproteins on Expression of Vasular Cell Adhesion Molecule- in Human Microvasuclar Endothelial Cells (혈관내피세포에서 Vascular Cell Adhesion Molecule-1 발현에 대한 혈장 지단백의 효과)

  • 박성희
    • Journal of Nutrition and Health
    • /
    • v.31 no.8
    • /
    • pp.1235-1243
    • /
    • 1998
  • Although an elevated plasma level of high density lipoprotein (HDL) is known as a protective component against the development of atherosclerosis and ensuing coronary heart diseases, the related mechanisms are still not established . It has been clearly demonstrated in the early stages of atherogenesis that adhesion of monocytes and lymphocytes to the vascular endothelium is enhanced via adhesion molecules, and that monocytes and macrophages accumulate in the subendothelial space. The present study has investigated whether isolated plasma HDL plays a role in protection against atherogenesis by inhibiting the expression of vascular cell adhesioin molecule-1(VCAM-1) on the endothelial cells. Effects of plasma native low density lipoprotein (LDL) and ac ethylated LDL(AcLDL) on VCAM-1 expression were also examined by using an immunocytochemical technique. While plasma HDL did not alter the basal expression of VCAM-1 , lipopolysaccharide(LPS) induction of this adhesion modlecule was markedly inhibited at a phyaiological concentration of HDL. In contrast, 30$\mu\textrm{g}$ protein/ml AcLDL increased sifnificantly both basal VCAM-1 expression and its LPD induction , suggesting that this modified LDL enhances leukocyte adhesiion to endothelial cells. Unlike AcLDL , plasma native LDL inhibited significantly VCAM-1 expression. This indicates that LDL did not undergo oxidative modificantion while incubated with endothelial cells. These results suggest that plasam HDL may inhibit atherogenesis by reducing the expression of adhesion molecules, which is a protective mechanism independent of tis reverse cholesterol transport function . Modified LDL is a potent iducer for adhesion molecules in vascular endothelical cells and could play a role in the pathogenesis of atherosclerosis by adhering to blood cells.

  • PDF

Construction and Characterization of a Single-Chain Immunoglobulin

  • Kim, Youn-Kyu;Choi, In-Hak;Ryu, Chun-Jeih;Hong, Hyo-Jeong
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.177-181
    • /
    • 1997
  • We constructed a single-chain immunoglobulin in which the carboxyl end of the heavy chain variable domain is covalently joined to the amino terminus of the light chain variable domain via peptide linker and the carboxyl end of the light chain variable domain is linked to human ${\gamma}1$ Fc region through the hinge region. The molecule was expressed in Chinese hamster ovary cells, assembled into a dimeric molecule and secreted into the culture medium. The dimeric molecule (2E11) was purified from the culture supernatant by affinity chromatography on Protein G-Sepharose column. The size of the unreduced or reduced protein was the expected molecular weight of approximately 120 or 60 kDa, respectively, as assessed by SDS-polyacrylamide gel electrophoresis. The antigen-binding affinity of 2E11 was almost the same as that of a native antibody counterpart (CS131A), suggesting that the single-chain immunoglobulin may function like a native antibody.

  • PDF

Adsorption of Globular Proteins to Vaccine Adjuvants

  • Jang, Mi-Jin;Cho, Il-Young;Callahan, Patricia
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.346-351
    • /
    • 1997
  • The maximum adsorption/desorption conditions and the adsorption mechanism of globular proteins to vaccine adjuvants were determined. The maximum adsorption ratio of protein to the $Al^{3+}$ content of aluminum oxyhydroxide and the optimal adsorption pH are 2:1 (${\mu}g:{\mu}g$) for bovine serum albumin (BSA) at pH 6.0 and 2.5:1 (${\mu}g:{\mu}g$) for immunoglobulin G (IgG) at pH 7.0, respectively. The maximum adsorption ratio onto aluminum phosphate gel was 1.5:1 (${\mu}g$ Protein:${\mu}g$ $Al^{3+}$) at pH 5.0 for both BSA and IgG. Adsorption of the native globular proteins, BSA and IgG, to aluminum oxyhydroxide and aluminum phosphate gel was reversible as a function of pH. Complete desorption of these proteins from aluminum phosphate gel was observed at alkaline pH, whereas only 80~90% removal from aluminum oxyhydroxide was achieved with alkaline pH and 50 mM phosphate buffer. We conclude that electrostatic and hydrogen bonding interactions between the native proteins and adjuvants are important binding mechanisms for adsorption, and that the surface charge of the protein and the colloid components control the maximum adsorption conditions.

  • PDF

Advances in the design of macroporous polymer scaffolds for potential applications in dentistry

  • Bencherif, Sidi A.;Braschler, Thomas M.;Renaud, Philippe
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.251-261
    • /
    • 2013
  • A paradigm shift is taking place in medicine and dentistry from using synthetic implants and tissue grafts to a tissue engineering approach that uses degradable porous three-dimensional (3D) material hydrogels integrated with cells and bioactive factors to regenerate tissues such as dental bone and other oral tissues. Hydrogels have been established as a biomaterial of choice for many years, as they offer diverse properties that make them ideal in regenerative medicine, including dental applications. Being highly biocompatible and similar to native extracellular matrix, hydrogels have emerged as ideal candidates in the design of 3D scaffolds for tissue regeneration and drug delivery applications. However, precise control over hydrogel properties, such as porosity, pore size, and pore interconnectivity, remains a challenge. Traditional techniques for creating conventional crosslinked polymers have demonstrated limited success in the formation of hydrogels with large pore size, thus limiting cellular infiltration, tissue ingrowth, vascularization, and matrix mineralization (in the case of bone) of tissue-engineered constructs. Emerging technologies have demonstrated the ability to control microarchitectural features in hydrogels such as the creation of large pore size, porosity, and pore interconnectivity, thus allowing the creation of engineered hydrogel scaffolds with a structure and function closely mimicking native tissues. In this review, we explore the various technologies available for the preparation of macroporous scaffolds and their potential applications.

The perception of clear and casual English speech under different speed conditions (다른 발화 속도의 또렷한 음성과 대화체로 발화한 영어문장 인지)

  • Yi, So Pae
    • Phonetics and Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.33-37
    • /
    • 2018
  • Korean students with much exposure to the relatively slow and clear speech used in most English classes in Korea can be expected to have difficulty understanding the casual style that is common in the everyday speech of English speakers. This research attempted to investigate an effective way to utilize casual speech in English education, by exploring the way different speech styles (clear vs. casual) affect Korean learners' comprehension of spoken English. Twenty Korean university students and two native speakers of English participated in a listening session. The English utterances were produced in different speech styles (clear slow, casual slow, clear fast, and casual fast). The Korean students were divided into two groups by English proficiency level. The results showed that the Korean students achieved 69.4% comprehension accuracy, while the native speakers of English demonstrated almost perfect results. The Korean students (especially the low-proficiency group) had more problems perceiving function words than they did perceiving content words. Responding to the different speech styles, the high-proficiency group had more difficulty listening to utterances with phonological variation than they did listening to utterances produced at a faster speed. The low-proficiency group, however, struggled with utterances produced at a faster speed more than they did with utterances with phonological variation. The pedagogical implications of the results are discussed in the concluding section.

A Study on the Active site of Glucoamylase from Aspergillus shirousamii

  • Lee Kuly Dong;Yang Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.107-111
    • /
    • 1989
  • Glucoamylase was inactivated with 1-ethyl-2-(dimethylaminopropyl)carbodiimide (EDC) at pH 5.0. Time course of inactivation of glucoamylase was at least biphasic. From the results of the titration of SH groups with Ellman's reagent and hydroxylamine treatment at pH 7.0, it was concluded that the crucial sites of modification were carboxyl groups of glucoamylase. The CD spectrum of EDC-modified glucoamylase suggested that the gross conformation of the native enzyme was retained. The inactivation of glucoamylase was reduced remarkably in the presence of maltose. The logarithm of the half-life of the inactivation of glucoamylase by EDC was a linear function of log[EDC] in each stage indicating that one carboxyl group among the modified ones was crucial for inactivation of glucoamylase. The change in the binding affinity due to modification was determined by using an affinity column. It indicates that the carboxyl group of glucoamylase seems to play a role in both, the catalysis and substrate binding in the first stage, but in the second stage the binding affinity is recovered almost up to that of native enzyme.

An analysis of listening errors by Korean EFL learners from self-paced passage dictation

  • Cho, Hyesun
    • Phonetics and Speech Sciences
    • /
    • v.13 no.1
    • /
    • pp.17-24
    • /
    • 2021
  • In this study, listening errors by Korean EFL learners are comprehensively analyzed from self-paced passage dictation tasks. Fifty-five Korean EFL learners participated in the study. Listeners were asked to write down dictation passages as accurately as possible, while listening to the audio as much as they needed. The results show that (i) low-proficiency learners tend to misperceive longer phrases than high-proficiency learners, (ii) function words are more often omitted or misheard than content words, and (iii) low-proficiency learners have more difficulties with content words than high-proficiency learners do. Most frequent suffix errors were omissions of past or plural suffixes. Among the function words, the most frequent errors were found with auxiliary contractions, infinitive marker to, and articles, mostly in the environment of linking and elision. It is also shown that C-V linking, C-C linking, and elision are the primary sources for the most frequent errors. C-V linking led to errors in correctly locating the word boundary, while C-C linking and elision resulted in omission. These errors show that Korean EFL listeners have difficulties in detecting fine-grained phonetic details to the extent that native speakers can do.

An evaluation of Korean students' pronunciation of an English passage by a speech recognition application and two human raters

  • Yang, Byunggon
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.19-25
    • /
    • 2020
  • This study examined thirty-one Korean students' pronunciation of an English passage using a speech recognition application, Speechnotes, and two Canadian raters' evaluations of their speech according to the International English Language Testing System (IELTS) band criteria to assess the possibility of using the application as a teaching aid for pronunciation education. The results showed that the grand average percentage of correctly recognized words was 77.7%. From the moderate recognition rate, the pronunciation level of the participants was construed as intermediate and higher. The recognition rate varied depending on the composition of the content words and the function words in each given sentence. Frequency counts of unrecognized words by group level and word type revealed the typical pronunciation problems of the participants, including fricatives and nasals. The IELTS bands chosen by the two native raters for the rainbow passage had a moderately high correlation with each other. A moderate correlation was reported between the number of correctly recognized content words and the raters' bands, while an almost a negligible correlation was found between the function words and the raters' bands. From these results, the author concludes that the speech recognition application could constitute a partial aid for diagnosing each individual's or the group's pronunciation problems, but further studies are still needed to match human raters.