• Title/Summary/Keyword: Nationally Determined Contribution (NDC)

Search Result 8, Processing Time 0.023 seconds

An Analysis of Changes in Power Generation and Final Energy Consumption in Provinces to Achieve the Updated Nationally Determined Contribution (NDC) (국가 온실가스 감축목표(NDC) 상향안 달성을 위한 17개 광역시도별 발전 및 최종에너지 소비 변화 분석)

  • Minyoung Roh;Seungho Jeon;Muntae Kim;Suduk Kim
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.865-885
    • /
    • 2022
  • Korean government updated her Nationally Determined Contribution (NDC) in 2021 and announced the target and various measures for reductions. Among the many issues, final energy demand and renewable energy power mix for 17 provinces to achieve the target are being analyzed using GCAM-Korea. Simulation results show that final energy demand of 2030 is approximated at the similar level to that of 2018. This is being enabled by the conservation of coal with higher electrification especially in industry sector. Higher power demand with lower coal consumption in final energy consumption is shown to be provided by 33.1% of renewable, 24.6% of gas, and 18.0% of nuclear power generation in 2030. Meanwhile, the share of coal-fired power generation is expected to be reduced to 12.8%. Major future power provider becomes Gyeongbuk (Nuclear), Gyeonggi (Gas), Jeonnam (Nuclear, Gas) and Gangwon (PV, Wind), compared to one of current major power provider Chungnam (Coal). This analysis is expected to provide a useful insight toward the national and provincial energy and climate change policy.

Technological Trends in Polymer Gas Separation Membrane for Carbon Neutrality (탄소중립을 위한 고분자 기체분리막의 기술 동향)

  • Khalid Muhammad Tayyab;Chul Ho Park
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.172-181
    • /
    • 2024
  • Many countries have passed laws to achieve Nationally Determined Contribution (NDC) which is a climate action plan to reduce greenhouse gas emissions and adapt to climate impacts. Although there are various technologies to achieve NDC targets, membrane technologies pose dramatical attractions for the purification of gaseous greenhouse gases or energy sources. Therefore, this review will provide the technological trends of polymeric membranes among various materials due to the advantages of the feasible fabrication process and easy scale-up.

Allocating CO2 Emission by Sector: A Claims Problem Approach (Claims problem을 활용한 부문별 온실가스 감축목표 분석)

  • Yunji Her
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.733-753
    • /
    • 2022
  • Korean government established the Nationally Determined Contribution (NDC) in 2015. After revising in 2019, the government updated an enhanced target at the end of last year. When the NDC is addressed, the emission targets of each sector, such as power generation, industry, and buildings, are also set. This paper analyzes the emission target of each sector by applying a claims problem or bankruptcy problem developed from cooperative game theory. The five allocation rules from a claims problem are introduced and the properties of each rule are considered axiomatically. This study applies the five rules on allocating carbon emission by sector under the NDC target and compares the results with the announced government target. For the power generation sector, the government target is set lower than the emissions allocated by the five rules. On the other hand, the government target for the industry sector is higher than the results of the five rules. In other sectors, the government's targets are similar to the results of the rule that allocates emissions in proportion to each claim.

Analysis of the Joint Crediting Mechanism's Contribution to Japan's NDC (일본의 NDC 이행을 위한 공동감축실적이전 분석)

  • Kim, Youngsun
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.297-303
    • /
    • 2017
  • Considering Japan's Greenhouse Gas (GHG) emissions reduction target for Fiscal Year (FY) 2030, the Joint Crediting Mechanism (JCM) was analyzed in order to estimate its significant contribution to Japan's Nationally Determined Contribution (NDC) and check its availability as a new mechanism to achieve Korea's 2030 mitigation target of 11.3% using carbon credits from international market mechanisms. The total budget for JCM Model Projects (1.2 billion JPY/yr) and JCM REDD+ Model Projects (0.8 billion JPY/yr), which are expected to deliver at least 50% of issued credits to Japan, is estimated about 21.6 billion JPY by the year 2030. This budget is about one third of the purchase of carbon credits from international carbon markets. So far, JCM credits of $378tCO_2-eq$. have been allocated to Japan, which are about 77% of the total issued credit through five-JCM Model Projects implemented from the year 2014. It is expected that Japan will obtain about $0.5MtCO_2-eq$. credits more from 100-ongoing JCM Projects, which are only 1% of Japan's NDC target through JCM credits. With regard to regular issued credits from implemented projects, expected new issued credits from pipeline projects and the less budget for JCM implementation as compared to purchasing carbon credits, JCM credits can be reached a resonable level of Japan's NDC target of $50{\times}100MtCO_2-eq$. through JCM until FY 2030.

Renewable energy deployment policy-instruments for Cameroon: Implications on energy security, climate change mitigation and sustainable development

  • Enow-Arrey, Frankline
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.56-68
    • /
    • 2020
  • Cameroon is a lower middle-income country with a population of 25.87 million inhabitants distributed over a surface area of 475,442 ㎢. Cameroon has very rich potentials in renewable energy resources such as solar energy, wind energy, small hydropower, geothermal energy and biomass. However, renewable energy constitutes less than 0.1% of energy mix of the country. The energy generation mix of Cameroon is dominated by large hydropower and thermal power. Cameroon ratified the Paris Agreement in July 2016 with an ambitious 20% greenhouse gas (GHG) emission reduction. This study attempts to investigate some renewable energy deployment policy-instruments that could enable the country enhance renewable energy deployment, gain energy independence, fulfill Nationally Determined Contribution (NDC) and achieve Sustainable Development Goals. It begins with an analysis of the status of energy sector in Cameroon. It further highlights the importance of renewable energy in mitigating climate change by decarbonizing the energy mix of the country to fulfill NDC and SDGs. Moreover, this study proposes some renewable energy deployment policy-solutions to the government. Solar energy is the most feasible renewable energy source in Cameroon. Feed-in Tariffs (FiT), is the best renewable energy support policy for Cameroon. Finally, this study concludes with some recommendations such as the necessity of building an Energy Storage System as well a renewable energy information and statistics infrastructure.

A Study on Strategies of Public R&D to Achieve National Carbon Neutrality: Focusing on the Implications of the Republic of Korea

  • Song, Jaeryoung;Kim, Cheolhu
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 2022
  • Climate action is at the top of the agenda in the international community, as demonstrated at the 2021 G7 Summit and the 2021 UN Climate Summit. Major developed countries are scrambling to make a transition to a green economy and create a new growth momentum. Following the Paris Climate Agreement in 2016, they focus on "carbon neutrality" as an effective means of tackling climate change. The Republic of Korea, a high-carbon economy, submitted its second Nationally Determined Contribution and announced carbon neutrality as a top policy priority. Accordingly, the country increases government budget in research and development (R&D) and science and technology (S&T) policies. Against this backdrop, this study analyzed policies on carbon-neutral S&T and R&D in major advanced countries. The analysis was made by identifying globally pending issues in carbon-neutral policies and climate technology. In addition, focus group interviews were conducted six times with 10 experts to come up with three R&D strategies and action plans for government-funded research institutes to achieve carbon neutrality. To be specific, the following measures were suggested. First, creative and innovative R&D programs are required to solve the problem of carbon emissions. Second, it is necessary to establish carbon neutrality policies and infrastructure which are sustainable to run and manage. Third, it is crucial to promote cooperation in climate technology based on excellence. In conclusion, the strategies proposed in this study are expected to provide directions and implications for policymakers, researchers, and scholars in science and technology to develop effective strategies to achieve national carbon neutrality.

Time-Series Analysis and Estimation of Prospect Emissions and Prospected Reduction of Greenhouse Gas Emissions in Chungbuk (온실가스 배출량 시계열 분석과 전망 배출량 및 감축 감재량 추정 - 충북을 중심으로 -)

  • Jung, Okjin;Moon, Yun Seob;Youn, Daeok;Song, Hyunggyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.41-59
    • /
    • 2022
  • In accordance with the enactment of 'the Paris Agreement' in 2015 and 'the Framework Act on Carbon Neutrality and Green Growth for Response to the Climate Crisis' in 2021, each local government has set appropriate reduction target of greenhouse gas to achieve the nationally determined contribution (NDC, the reduction target of 40% compared to 2018) of greenhouse gas (GHG) emissions in 2030. In this study, the current distribution of GHG emissions was analyzed in a time series centered on the Chungbuk region for the period from 1990 to 2018, with the aim of reducing GHG emissions in Chungbuk by 2030 based on the 2030 NDC and scenario. In addition, the prospected reduction by 2030 was estimated considering the projected emissions according to Busines As Usual in order to achieve the target reduction of GHG emissions. Our results showed that GHG emissions in Chungbuk and Korea have been increasing since 1990 owing to population and economic growth. GHG emissions in 2018 in Chungbuk were very low (3.9 %) relative to the national value. Moreover, emissions from fuel combustion, such as cement and lime production, manufacturing and construction industries, and transportation industries, were the main sources. Furthermore, the 2030 target of GHG emission reduction in Chungbuk was set at 40.2% relative to the 2018 value, in accordance with the 2030 NDC and 2050 carbon-zero national scenario. Therefore, when projected emissions were considered, the prospected reduction to achieve the target reduction of GHG emissions was estimated to be 46.8% relative to 2018. The above results highlight the importance of meeting the prospected reduction of GHG emissions through reduction means in each sector to achieve the national and local GHG reduction target. In addition, to achieve the 2030 NDC and 2050 carbon zero, the country and each local government, including Chungbuk, need to estimate projected emissions by year, determine reduction targets and prospect reductions every year, and prepare specific means to reduce GHG emissions.

A study to find the operation conditions to minimize carbon footprint using a simulator(EQPS) (시뮬레이터(EQPS)를 이용한 탄소발자국 최소화 운전 방안에 대한 연구)

  • Jisoo Han;Jeseung Lee;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.37-48
    • /
    • 2024
  • Wastewater treatment plants (WWTPs) are obligated to reduce carbon emissions as a part of public sector greenhouse gas (GHG) emission reduction targets. However, Sewage Statistics(2022) shows that CO2 emissions per wastewater treatment volumes have decreased by only 3.03 % compared to 2020, which is far from enough to meet the Nationally Determined Contribution (NDC) targets. This study aimed to find operational conditions of biological reactors that minimize total carbon footprint (CFP). Total CFP considers both direct emissions from biological processes and indirect emissions from energy consumption. A study was conducted using a computer simulation program which is called as EQPS for a 4-stage BNR WWTP. The results showed that total CFP was reduced by 10.97% compared to the design condition when the mixed liquor recirculation (MLR) was set to 100 % of the influent flow. The N2O emission factor (EF) of the target WWTP was calculated to be 0.138-0.199 %, which is significantly lower than the IPCC default value of 1.6 %. This study proposes a method to minimize total CFP in WWTPs by optimizing biological reactor operation and emphasizes the need for further research on N2O emission reduction.