• Title/Summary/Keyword: National fire safety code

Search Result 46, Processing Time 0.029 seconds

Reviewing the Expandability of KBimCode based on the Comparison between Korean and Chinese Building Act - Centered around the Egress and Fire Safety Related Regulations - (한.중 건축법규 비교분석을 통한 KBimCode의 확대 적용가능성 고찰 - 피난 및 방화와 관련된 법규항목을 중심으로 -)

  • Huang, JinHua;Park, SeoKyung;Lee, Jin-Kook
    • Design Convergence Study
    • /
    • v.15 no.6
    • /
    • pp.73-92
    • /
    • 2016
  • As one of empirical research and developments on BIM applications to improve design quality and productivity of building, efforts have been devoted to automated compliance checking of building design for building permit. KBimLogic is a mechanism that translate Korean Buidling Act to the computational language called KBimCode. KBimCode aims to standardized and neutral language that can be applied to various design rules. This paper focuses on testing expandability of KBimCode by appling it on Chinese Building Act. We analyzed Chinese national regulation on fire protection and evacuation, based on 1) Object·property, 2) function for predicate processing, 3) relationship of sentences. As a result, Chinese Building Act were successfully translated to KBimCode with some important implications for further application. Based on the finding of the paper, KBimCode is expected to be applicable to kinds of design rules.

A Study on the Fire Risk Comparison of Building Flooring Materials by External Heat Flux (건축용 바닥재의 외부복사열에 의한 화재위험성 비교 연구)

  • Park, Youngju;Kim, Youngtak
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.20-24
    • /
    • 2017
  • In this study, we have performed the Cone Calorimeter test in accordance with ISO 5660-1 to check the combustion characteristics of building flooring materials. The fire risk of these materials were evaluated by construction code, KFI criteria and standards of flame retardant performance. When samples exposed to external heat flux, all samples consumed a lot of Oxygen for a long time. So heat release from sample burning continued so long. And also all samples produced so much smoke. Even though a few samples were satisfied with only peak heat release rate criteria, all 8 samples were not satisfied with criteria of peak heat release rate and total heat released together. The results of 5 min total heat released were $15.9MJ/m^2{\sim}5.9MJ/m^2$. It menas the results are more than 2~6 times higher than the criteria. The results of 10 min total heat released were $30.1MJ/m^2{\sim}100.8MJ/m^2$. It means the results are more than 3~12 times higher than the criteria. 6 of 8 samples were not satisfied with Dm.corr.(corrected maximum smoke density) criteria. The building flooring materials which we used for this test ignited very fast and the burning continued so long. It means these samples are susceptible to fire.

A Proposal on the Pipe Schedule Sprinkler System of NFSC 103 (NFSC 103 스프링클러설비의 배관스케줄방식에 대한 제안)

  • Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.40-47
    • /
    • 2014
  • Design by means of the pipe schedule sprinkler system of NFSC 103 results in insufficient pressure and flow rate about 50% sprinklers of operating area. In order to solve the lack of pressure and flow rate, This paper compare and analyzed NFSC 103, National Fire Safety Code of Sprinkler System, with NFPA 13, Standard for the Installation of Sprinkler Systems, and suggested an alternative proposal. Changing the flow rate of each sprinkler from existing 80 L/min to 120 L/min, All of the operating sprinklers are fulfilled the minimum demands on 80 L/min and 1 bar. It is easy for everyone to design of the pipe schedule sprinkler system and it is optimum method that all sprinklers in design area are satisfied with minimum criteria.

A Study on Improvenment of Livingroom Smoke-control System using the FDS (화재 시뮬레이션(FDS)을 이용한 거실제연설비 개선에 관한 연구)

  • Kim, Mi-Seon;Baek, Eun-Seon
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.26-34
    • /
    • 2017
  • The purpose of this study is to identify and improve the performance of the adjacent room ventilation system in living room ventilation facilities, and compare and analyze the smoke control regulations of the NFPA code and the national fire safety standard (NFSC). The analysis method was fire dynamics simulation (FDS) and was used to analyze the, variations of the air supply amount, width of the boundary, change in indoor combustion and wind velocity of the incoming air. It was found to be advantageous to secure the clean layer when the amount of air supplied is less than the amount of discharged air in the fire room. However, in the supply room, it is more effective to secure the clean layer when the amount of supplied air is larger than the amount of discharged air, as a longer boundary width gives rise to better performance. In addition, it is necessary to consider the amount of air supplied and discharged as a function of the kind of flammable material. Moreover, decreasing the air inlet wind speed and amount of incoming air is advantageous for securing the clean layer of the fire room.

Study on the Performance Deterioration of Erosion-corrosion Damaged Automotive Water Pump (침식 마모 손상된 차량용 워터펌프의 성능저하 연구)

  • Jeon, Seung-Won;Park, Chan-Seong;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • A flow analysis for the erosion-corrosion damaged automotive water pump which causes vehicle fire is numerically performed using the CFX program, computational fluid dynamics (CFD) code. The blade bending deformation and the blade clearance enlargement are considered in the analysis of performance reduction. For the cavitation analysis, the homogeneous multi phase model is adopted using the Ralyleigh-Plesset model for the rate equation controlling vapor generation and condensation.

Effects of Fire Curtain and Forced Smoke Ventilation on Smoke Spread to Auditorium in Stage Fire of Theater (공연장 무대 화재 시 방화막과 강제 배연구가 객석으로의 연기 확산에 미치는 영향)

  • Kim, Jae Han;Kim, Duncan;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.28-36
    • /
    • 2017
  • In this work, the effects of fire curtain and forced smoke ventilation on smoke spread to auditorium in the stage fire of theater were investigated using the Fire Dynamics Simulator (FDS). For the stage of 31 m (Width)${\times}$34 m (Depth)${\times}$32 m (Height) in dimension, the fast growth fire condition with 10 MW of heat release rate was applied. The forced smoke ventilation was set based on the National Fire Safety Code (NFSC) and previous research. The gap distances between the fire curtain and proscenium wall was established to be 0 m and 0.5 m. When the fire curtain was attached completely to the proscenium wall without any gap, no smoke spread from the stage to the auditorium occurred, independent of forced smoke ventilation. When the gap distance between the fire curtain and proscenium wall was 0.5 m, the smoke layer in the stage descended to the lower height from the bottom than the case without the fire curtain, which was because the smoke spread to auditorium was impeded by the fire curtain. Under the same fire curtain condition, the case with the forced smoke ventilation led to decreasing the mass flow rate of outflow through the gap between the fire curtain and proscenium wall, as compared to the case without the forced smoke ventilation. Based on this study, it was confirmed that the fire curtain and forced smoke ventilation were the effective tools to hold down the smoke spread to the auditorium in the stage fire of theater.

A Research on the Navigation of Northern Sea Route According to Safety of Vessel and Crews (선박 및 선원의 인명 안전을 고려한 북극해 항로 운항 연구)

  • Kim, Won-Ouk;Youn, Dae-Gwun;Park, Woe-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Arctic Ocean has rapidly melted due to global warming, by this, commercial ship has been operating through the area. Reason to develop the Northern Sea Route(NSR) even in extreme conditions, the distance than the existing route is shortened, which bring economic benefits. For these reason, the International Maritime Organization(IMO) established safety standards of the Arctic navigation(Polar Code) in order to ensure safe operation in the Northern Sea Route. In this study, it has been described ice types and safety standards of Artic vessel what officer needs to know for safe navigation on the Arctic Ocean. And It was verified by simulation the theoretical knowledge for the safe operation of the Arctic vessel. As a result, it was found that ship needs to reduce speed and analyze ice for safe operation before enter into the ice, it is necessary to enter at right angle to break ice safety and efficiently. Also according to the result of the simulation of navigation entering in ice channel(Lead), it was difficult to change course, it is believed that require emergency training for passing Vessel. In the future, It shall be analyzed precisely under various conditions of scenario.

A Study on the Optimal Make of X-ray Ionizer using the Monte Carlo N-Particle Extended Code(II) (Monte Carlo N-Particle Extended Code를 이용한 연 X선 정전기제거장치의 최적제작에 관한 연구(II))

  • Jeong, Phil Hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.29-33
    • /
    • 2017
  • In order to solve this sort of electrostatic failure in Display and Semiconductor process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. There exist variable factors such as type of tungsten thickness deposited on target, Anode voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. Here, MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was compared according to target material thickness using MCNPX and actual X-ray tube source under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W). At the result, In Tube voltage 5 keV and distance 100 mm, optimal target thickness is $0.05{\mu}m$ and fastest decay time appears + decay time 0.28 sec. - deacy time 0.30 sec. In Tube voltage 10keV and distance 100 mm, optimal target Thickness is $0.16{\mu}m$ and fastest decay time appears + decay time 0.13 sec. - deacy time 0.12 sec. In the tube voltage 15 keV and distance 100 mm, optimal target Thickness is $0.28{\mu}m$ and fastest decay time appears + decay time 0.04 sec. - deacy time 0.05 sec.

A Trends Analysis on Safety for CNG/HCNG Complex Fueling Station (CNG/HCNG 복합충전소의 안전에 관한 동향분석)

  • Lee, Seung-Hyun;Kang, Seung-Kyu;Sung, Jong-Gyu;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this research, the safety trends and technologies of HCNG, a mixture of hydrogen and natural gas, are analyzed. This is an attracting alternative fuels to meet the strengthened automotive exhaust gas emission standards. HCNG is very important opportunities and challenges in that it is available the existing CNG infrastructures, meets the strengthened emission standards, and the technical, social bridge of the coming era of hydrogen. It is essential for the commercialization of HCNG that hydrogen - compressed natural gas blended fuel for use in preparation of various safety considerations included accidents scenario, safety distance, hydrogen attack, ignition sources and fire detectors are examined. Risk assessments also are suggested as one of permission procedure for HCNG filling station.

A Study on the Necessity of Introducing Evacuation Instrument in High-rise Buildings - Focusing on Elevator Type Evacuation Instrument - (고층건축물의 피난기구 도입 필요성에 관한 연구 - 승강식피난기를 중심으로 -)

  • Choi, Kyu-Chool;Ra, Pan-Ju;Seul, Yeong-Mi
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-19
    • /
    • 2014
  • The fast evacuation from fire floors to evacuation floors in high-rise building fires can minimize the human damage. In this study, an evacuation instrument, which are applicable to the high-rise buildings of adaptable escape mechanisms by the current NFSC 301 (national fire safety code 301), were selected to analyze the applicability in the high-rise buildings over 11th floor through the site adaptability test. The results of the site test were as follows. The elevator type evacuation instrument of new concept developed as a new technology by compensating the defect of evacuation instrument limiting in the high-rise buildings over 11th floor had completed the stability test and the performance certification test in fire stations, which there were no problems in the introduction of the elevator type evacuation instrument as an escape mechanism in the high-rise buildings. The elevator type evacuation instrument using escapers' weight without using electric power was an escape mechanism that many people could evacuate in a short period of time when a fire broke out in the high-rise buildings. In particular, The elevator type evacuation instrument operated by nonpower had the adaptability as a customized escape mechanism considering user characteristics in the buildings for the disabled or patients with an advanced disease.