• Title/Summary/Keyword: National River

Search Result 4,378, Processing Time 0.034 seconds

Ecological Health Assessment using Fish for the Han River and Nakdong River in Korea (한강 및 낙동강 수계 주요 하천을 중심으로 어류를 이용한 수생태 건강성 평가)

  • Noh, Seong Yu;Choi, Hee Lak;Park, Jong Young;Hwang, Soon Jin;Kim, Sang Hun;Lee, Jae An
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.319-327
    • /
    • 2015
  • The present study was carried out to develop biological criteria for aquatic ecosystem health assessment using composition and diversity of collected species. The sampling sites were a total of 67 sites in the Han River (29 sites) and the Nakdong River (38 sites), May and September 2012. During the survey period fish were collected totally 93 species. In each water system, 73 and 61 species were collected in the Han River and the Nakdong River respectively. The current composition of fish species between the Han River and Nakdong River showed similar pattern. The dominant species was Zacco platypus of the Han River, and the Nakdong River was Opsariichthys uncirostris. In particular, ecological characteristics of O. uncirostris frequently appeared in general polluted waters. In conclusion, in the Nakdong River, average value of FAI (Fish Assessment Index) was averaged 41.3, indicating a "poor condition", and the Han River was 53.1, indicating a "poor condition". The aquatic health of the Nakdong River assessed based on FAI was considered to be worse than that of the Han River.

Characteristics of Spatial and Temporal Organic Matter in the Han River Watershed (한강수계 유기물의 시·공간적 분포 특성 비교)

  • Yu, Soonju;Cho, Hangsoo;Ryu, Ingu;Son, Juyeon;Park, Minji;Lee, Bomi
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.409-422
    • /
    • 2018
  • The purpose of this study is to find the characteristics of organic matters based on the distribution and oxidation rates, as noted according to the spatial and temporal variations from 2008 to 2016. Generally speaking, the Han River system is separated into one lower course and two upper courses which are the Namhan River and Bukhan River. The seasonal factor is one of the most important causes of water quality changing in both of the upper courses as a result of a few pollution sources. The concentration of organic matter was measured as higher in the lower course into which great streams with point and non-point sources were identified. According to seasonal variations, however, the change of the organic matter in the lower course is comparatively slighter than that of organic matters in the upper courses. The oxidation rates related to the BOD were 15 %, 17 % and 26 % in the Bukhan River, Namhan River and the lower course, respectively. These results could be explained that more biodegradable organic matter were seen to have existed in the lower courses comparing to the activity in the upper course. The oxidation rates of the BOD were noted as relatively higher in the eutrophicated places with phytoplankton. Therefore the BOD is one of the good index models to find the characteristic of the eutrophicated water. On the other hand BOD would not be enough to estimate concentration of refractory organic matters in the Bukhan and Namhan river. Consequently, both of the TOC and BOD are necessary indices to understand the identified refractory and/or biodegradable characteristics of organic matter.

Large scale flood inundation of Cambodia, using Caesar lisflood

  • Sou, Senrong;Kim, Joo-Cheol;Lee, Hyunsoek;Ly, Sarann;Lee, Giha;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.211-211
    • /
    • 2015
  • Mekong River is the world's $10^{th}$ longest river and runs through China's Yunnan province, Burma, Thailand, Laos, Cambodia and Vietnam. And Tonle Sap Lake, the largest fresh water body in Southeast Asia and the heart of Mekong River system, covers an area $2,500-3,000Km^2$ in dry season and $10,000-16,000Km^2$ in wet season. As previously noted, the water within Sap river flows from the Mekong River to Tonle Sap Lake in flood season (between June and October) and backward to Mekong River in dry season. Recently the flow regime of Sap River might be significantly affected by the development of large dams in upstream region of Mekong River. This paper aims at basic study about the large scale flood inundation of Cambodia using by CAESAR-Lisflood. CAESAR-Lisflood is a geomorphologic / Landscape evolution model that combines the Lisflood-FP 2d hydrodynamic flow model (Bates et al, 2010) with the CAESAR geomorphic model to simulate flow hydrograph and erosion/deposition in river catchments and reaches over time scales from hours to 1000's of years. This model is based on the simplified full Saint-Venant Equation so that it can simulate the interacted flow of between Mekong River and Tonle Sap Lake especially focusing on the flow direction change of Sap River by season.

  • PDF

Evaluating Sediment Heavy Metal Pollution Level and Monitoring Network Representativeness at the Upstream Points of the Gangjeong-Goryeong Weir in the Nakdong River (낙동강 강정고령보 상류 퇴적물 측정망 지점의 중금속 오염도 및 대표성 평가)

  • Ahn, Jung Min;Im, Teo Hyo;Kim, Sungmin;Lee, Sangsu;Kim, Shin;Lee, Kwon Cheol;Kim, Yong Seok;Yang, Deuk Seok
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.477-488
    • /
    • 2018
  • In this study, heavy metal levels at the sediment monitoring network site upstream of the Gangjeong-Goryeong weir in the Nakdong River were surveyed from 2012 to 2016. We assessed the sediment pollution level using various pollution indexes based on ICP-MS analysis. The stream sediment pollution assessment standard, established through Regulation No. 687 of the National Institute of Environmental Research (2015), pollution load index (PLI), potential ecological risk index (RI), and mean PEL Quotient (mPELQ) were used to evaluate the sediment pollution level. We verified the representativeness of the monitoring point through the distribution of sedimentation and scour behavior by river bed surveying using anacousticDopplercurrentprofiler.

Water Quality Assesment of the Lower Yeongsan River System (영산강 하류권역 하천수의 수질평가)

  • Youn, Seok-Tai;Koh, Yeong-Koo;Oh, Kang-Ho;Moon, Byoung-Chan;Kim, Hai-Gyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.259-270
    • /
    • 2003
  • To investigate the water quality and the pollution state of lower Yeongsan river system, 38 water samples were taken from the main stream of the Yeongsan river, Gomakwon and Hampyeong streams of the system in dry and flood seasons, May and August, 2001. The Yeongsan river is typically natural in accordance with pH-& diagram. But the chemistry based on Piper's diagram indicates that the river is influenced by seawater. BOD increases as the sampling sites are approaching the downstream in Gomakwon and Hampyeong streams overwhelming WQS V grade of 12.40mg/l. T-N and T-P of the river are mainly loaded not in above branch streams but in the main stream of the river, which are caused by manure for farming, domestic animal discharges and life-sewage, in possible. Meanwhile, heavy metal contents are below WQS or not detect in whole water samples. So, it shows that the above river waters be polluted by not industrial but life/agricultural foul waters.

Distribution pattern of Pectinatella magnifica (Leidy, 1851), an invasive species, in the Geum River and the Nakdong River, South Korea

  • Jo, Hyunbin;Joo, Gea-Jae;Byeon, Myeoungseop;Hong, Dong-Gyun;Gim, Jung-Soo;Kim, Ji-Yoon;Choi, Jong-Yun
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.217-223
    • /
    • 2014
  • We conducted a distributional survey of Pectinatella magnifica, an invasive species, in the Geum River and the Nakdong River from July 12 to July 25, 2014. The spacing between the study sites was 10 km along the main channels for the Geum River (n = 12, 120 km) and the Nakdong River (n = 38, 380 km) from the estuarine barrage to upper part of main channel. Pectinatella magnifica was detected along the riparian zone (within 100 m) at each of the study sites. Presence rate of P. magnifica in Geum River and Nakdong River was 25% and 32.6%, respectively. The colony number of P. magnifica at Geum River ($9.5{\pm}3.1colony/m$, n = 3) was over 94 fold higher than that in the Nakdong River ($0.1{\pm}0.1colony/m$, n = 16). The Total length distribution of P. magnifica had a truncated bell shape at each rivers (mean length: $14.0{\pm}1.2cm$ for Geum River (n = 32), and $16.8{\pm}1.4cm$ for Nakdong River (n = 52)). These findings could provide basic information regarding the distribution pattern of P. magnifica in a new invasion area.

An Analysis of Long-term Changes in Water Quality of Geumho River using Statistical Techniques

  • Jung, Kang-Young;Cho, Sohyun;Ha, Don-woo;Kang, Tae-woo;Lee, Yeong Jae;Han, Kun-Yeun;Kim, Kyunghyun
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.883-899
    • /
    • 2018
  • In this study, water quality data of eight main sites in the Geumho River watershed were collected and analyzed for long-term changes in water quality over the period from 2005 to 2015. The results showed that BOD concentration was gradually improved by the Total Maximum Daily Load (TMDL), stages 1 and 2. Recently, a tendency of increasing BOD concentration was observed in the downstream section of the river. The concentration of COD was analyzed to be contaminated throughout the water system regardless of the water quality improvement project, and the TN concentration tended to increase in the midstream of the river from 2013. The TP concentration has clearly decreased from 2012 after the second stage of TMDL. For the statistical analysis of PCA ordination, monthly water qualities (pH, DO, Electrical Conductivity (EC), Water Temperature (WT), BOD, COD, TN, TP, TOC, and SS) and flow rate data for 5 years from 2012 to 2016 were used. Seasonally the Geumho River showed an increase in the TN concentration at point sources during the dry season (December to February). TP showed the effect of non-point sources in the summer, because rainfall has caused a rise in flow rate in the upstream. Besides, the origin of pollution source was changed from non-point sources with BOD, COD, and TOC.

Selection of Priority Management Target Tributary for Effective Watershed Management in Nam-River Mid-watershed (남강 중권역의 효율적인 유역관리를 위한 중점관리 대상지류 선정)

  • Jung, Kang-Young;Kim, Gyeong-Hoon;Lee, Jae-Woon;Lee, In Jung;Yoon, Jong-Su;Lee, Kyung-Lak;Im, Tae-Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.514-522
    • /
    • 2013
  • The major 24 tributaries in Nam-River mid-watershed were monitored for discharge and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. According to the analytical results of discharge and water quality monitoring data of 24 tributaries, the mean value of discharge below $0.1m^3/s$ was 62.5% among the monitored tributaries and it mostly exceeded the water quality standards of Nam-river mid-watershed ($BOD_5$ = 3 mg/L, T-P = 0.1 mg/L over). According to the stream grouping method and the water quality delivery load density ($kg/day/km^2$) based on the results of tributary discharge and water quality monitoring, the tributary watersheds for improving the water quality were selected. In the Nam-River mid-watershed, tributaries in the GaJwaCheon, HaChonCheon catchment (Group D, $BOD_5$ = 3 mg/L over) and in the UirYeongCheon, SeokGyoCheon catchment (Group A, T-P = 0.1 mg/L over), which have a small flow (and/or large flow) and a high concentrations of water pollutants. The various water quality improving scheme for tributaries, in accordance with the reduction of potential point source pollution by living sewage and livestock wastewater, should be established and implemented.

A Study on Instream Flow for Water Quality Improvement in Lower Watershed of Nam River Dam (남강댐 하류유역 수질개선 필요유량 산정에 관한 연구)

  • Kim, Gyeong-Hoon;Jung, Kang-Young;Lee, In-Jung;Lee, Kyung-Lak;Cheon, Se-Uk;Im, Tae-Hyo;Yoon, Jong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.44-59
    • /
    • 2014
  • Despite the implementation of TMDL, the water quality in lower watershed of Nam river dam has worsened continuously since 2005. Multifarious pollution sources such as cities and industrial districts are scattered around it. Nam river downstream bed slope is very gentle towards the downstream water flow of slows it down even more, depending on the water quality deterioration is accelerated eutrophication occurs. In this study, the mainstream in lower watershed of Nam river dam region to target aquatic organic matter by phytoplankton growth contribution was evaluated by statistical analysis. and statistical evaluation of water quality and the accuracy of forecasting, model calibration and verification procedures by completing QUALKO2 it's eutrophic phenomena that occur frequently in the dam outflow through scenarios predict an increase in water quality management plans to present the best should.

Studies on β-diversity for high plant community turnover in flood plain restoration (수변 복원 시 식물종 다양성 증진을 위한 β-diversity 연구)

  • Han, Young-Sub;Kim, Hae-Ran;Han, Seung-Ju;Jeong, Jung-Kyu;Lee, Seung-Hyuk;Jang, Rae-Ha;Cho, Kyu-Tae;Kang, Tay-Gyoon;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.501-508
    • /
    • 2013
  • We have researched heterogeneity of naturalized river plant community by ${\beta}$-diversity for restoration of river community which has high diversity plant species. As a result the average of heterogeneity was 0.32(range 0.23~0.37) from the river to the inland. This value shows community turnover of species composition of plant communities 6 times. The ${\beta}$-diversity was no difference among water system of Seomjin river, Han river, Nakdong river and Geum river. The upper-river valley(0.36) was higher than lower-river valley(0.23) in each water system(p level<0.05). Multiple regressing analysis was used for look the relationship with Environmental factors as a result, it shows ${\beta}$-diversity significant on a slope. River mimetic diagram with dominant species that appear through Belt-transect painted. Dominant plant species turned 6 time in upper-river and turned about 5 time in lower-river. The result of this study suggested practical basis of planting species and planting pattern. To improve species diversity of river plant community, slope degree raise is the most important.