• Title/Summary/Keyword: National Representative Libraries

Search Result 24, Processing Time 0.019 seconds

Current Trends for National Bibliography through Analyzing the Status of Representative National Bibliographies (주요국 국가서지 현황조사를 통한 국가서지의 최신 경향 분석)

  • Lee, Mihwa;Lee, Ji-Won
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.1
    • /
    • pp.35-57
    • /
    • 2021
  • This paper is to grasp the current trends of national bibliographies through analyzing representative national bibliographies using literature review, analysis of national bibliographies' web pages and survey. First, in order to conform to the definition of a national bibliography as a record of a national publication, it attempts to include a variety of materials from print to electronic resources, but in reality it cannot contain all the materials, so there are exceptions. It is impossible to create a general selection guide for national bibliography coverage, and a plan that reflects the national characteristics and prepares a valid and comprehensive coverage based on analysis is needed. Second, cooperation with publishers and libraries is being made to efficiently generate national bibliography. For the efficiency of national bibliography generation, changes should be sought such as the standardization and consistency, the collection level metadata description for digital resources, and the creation of national bibliography using linked data. Third, national bibliography is published through the national bibliographic online search system, linked data search, MARC download using PDF, OAI-PMH, SRU, Z39.50, and mass download in RDF/XML format, and is integrated with the online public access catalog or also built separately. Above all, national bibliographies and online public access catalogs need to be built in a way of data reuse through an integrated library system. Fourth, as a differentiated function for national bibliography, various services such as user tagging and national bibliographic statistics are provided along with various browsing functions. In addition, services of analysis of national bibliographic big data, links to electronic publications, and mass download of linked data should be provided, and it is necessary to identify users' needs and provide open services that reflect them in order to develop differentiated services. Through the current trends and considerations of the national bibliographies analyzed in this study, it will be possible to explore changes in national and international national bibliography.

A National Study Explaining the Public Library Use among Korean Adults: Examining the Influence of Individual Characteristics, Local Library Inputs, and Local Government Investments (한국 성인의 공공도서관 이용에 영향을 미치는 주요 요인 분석 - 개인, 도서관의 특성 및 자치단체의 도서관 투자를 중심으로 -)

  • Kwon, Nahyun;Song, Kyeong-Jin
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.291-312
    • /
    • 2014
  • The purpose of this national study is to identify the factors affecting the public library use among the Korean adult population. The study constructed a model of three types of factors to explain the frequency of public library visits: an individual's socio-demographic characteristics, input and output measures of the local library, and the community size and library investment of the local government. The data were collected from both a national representative sample of 1,000 adults of 18 years old or above who participated in a web survey and the 2013 National Library Statistics of Korea. It was found that a more frequent public library visit occurred when a person who read more and lived closer to the library, which was newly established in a small to medium-sized scale, who lives in a city with a greater population and with more library staff members serving a fewer patrons. Implications for future public library constructions and for public services were suggested based on the study findings.

A National Study of Perceived Outcomes of Public Library Services: Measuring the Perceived Benefits of Public Library Services among Korean Adult Library Users (공공도서관 서비스 성과 평가 - 일상생활에서의 공공도서관 서비스 혜택에 대한 전국 성인들의 인식을 중심으로 -)

  • Kwon, Nahyun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.49 no.2
    • /
    • pp.169-194
    • /
    • 2015
  • The purpose of this study was to assess the performance of Korean public libraries based on the national representative sample using Vakkari and Serola's (2012) public library outcome scale. Conducting a web-based survey to 1,000 Korean adults nationwide, the responses of 629 respondents who had visited the public library in the past year were analyzed. Results showed that, among the 19 benefit areas, "reading fiction and non-fiction" was the most perceived benefit area followed by "acquiring educational opportunities", and "self-development during leisure time". The benefits were considerably lowly perceived in the rest 16 areas. Different from the original four-factor structure, "reading/self development" were emerged as a new factor in this Korean sample. The benefits were perceived differently by citizens with different socio-demographic backgrounds. Results informed the current status of the public library performance and values perceived by the general Korean adults population across the nation.

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.