• Title/Summary/Keyword: National Groundwater Monitoring Wells

Search Result 83, Processing Time 0.032 seconds

Evaluation of Status of Groundwater Quality Monitoring Network of Korea : Implications for Improvement (우리나라 지하수수질측정망 현황 평가 및 개선을 위한 고찰)

  • Park, Joung-Ku;Kim, Rak-Hyeon;Lee, Jin-Yong;Choi, Dong-Hyuk;Kim, Tae-Dong
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.92-99
    • /
    • 2007
  • As of 2007, there are 2,499 groundwater quality monitoring stations in total in Korea. Among them,478 are operated by the MOCT (Ministry of Construction and Transportation) for the National Groundwater Network Program, 781 wells by the ME (Ministry of Environment) for monitoring of the area where imminent contamination is expected, and 1240 wells by the local governments for monitoring of other areas. Even though, water quality data obtained from those wells are being provided to the public since 1999, the information for the wells has not been appropriately informed. In this study, we assessed the wells that are being used for the national groundwater quality monitoring from the points of operation, location, and well configuration to provide suggestions for the improvement of the national groundwater quality monitoring.

Effect of Land Use Type on Shallow Groundwater Quality

  • Jeong Seung-Woo;Kampbell Donald H.;An Youn-Joo;Masoner Jason R.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.122-126
    • /
    • 2005
  • Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a two-year period from 1999 to 2001 the monitoring wells were sampled every three months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land-use and temporal change.

  • PDF

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

Suggestion of a Groundwater Quality Management Framework Using Threshold Values and Trend Analysis (문턱값과 추세분석을 이용한 지하수 수질관리체계 구축을 위한 연구)

  • An, Hyeonsil;Jee, Sung-Wook;Lee, Soo Jae;Hyun, Yunjung;Yoon, Heesung;Kim, Rak-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.112-120
    • /
    • 2015
  • Statistical trend analysis using the data from the National Groundwater Quality Monitoring Network (NGQMN) of Korea was conducted to establish a new groundwater quality management framework. Sen’s test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of the groundwater quality data. The analysis was conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99% confidence levels) for three of groundwater quality parameters, i.e., nitrate-nitrogen, chloride, and pH, which have sufficient time series of the NGQMN data between 2007 and 2013. The results showed that different trends can be determined for different depths even for the same monitoring site and the numbers of wells having significant trends vary with different confidence levels. The wells with increasing or decreasing trends were far less than the wells with no trend. Chloride had more wells with increasing trend than other parameters. On the other hand, nitrate-nitrogen had the most wells with increasing trend and concentration exceeding 75% of the threshold values (TVs). Based on the methodology used for this study, we suggest including groundwater TVs and trend analysis to evaluate groundwater quality and to establish an advanced groundwater quality management framework.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

Interpolation of Missing Groundwater-Level Data at the National Groundwater Monitoring Wells (장기 관측 지하수위 결측자료 보완)

  • 정상용;심병완;강동환;원종호;김규범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.15-22
    • /
    • 2000
  • Long ranged groundwater-level data often have the missing intervals because of the trouble of monitoring systems at the national groundwater monitoring wells. Geostatistical methods are very useful for the supplement of the missing data. Ordinary kriging was applied for the interpolation of the missing groundwater-level data with a smooth sinusoidal variation. Conditional simulation was used for the reproduction of the missing data with high fluctuations. Two geostatistical methods produced the very accurate estimates at the missing intervals and reproduced their original variations. This fact is proved by the cross validation test and graphical method, respectively.

  • PDF

Classification and Characterization for Water Level Time Series of Shallow Wells at the National Groundwater Monitoring Stations (국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교)

  • Kim, Gyoo-Bum;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.86-97
    • /
    • 2007
  • The principal component analysis was performed to identify the general characteristics of groundwater level changes from 202 deep and 112 shallow wells monitoring data, respectively, which came from the National Groundwater Monitoring Stations operated by KWATER with time spans of 156 continuous weeks from 2003 to 2005. Eight principal components, which accounted for 80% of the variability of the original time series, were extracted for water levels of shallow and deep monitoring wells. As a result of cluster analysis using the loading value of three principal components for shallow wells, shallow monitoring wells were divided into 3 groups which were characterized with a response time to rainfall (Group 1: 4.6 days, Group 2: 24.1 days, Group 3: 1.4 days), average long-term trend of water level (Group 1: $2.05{\times}10^{-4}$ m/day, Group 2: $-7.85{\times}10^{-4}$ m/day, Group 3: $-3.51{\times}10^{-5}$ m/day) and water level difference (Group 1 < Group 2 < Group 3). Additionally, they showed significant differences according to a distance to the nearest stream from well (Group 3 < Group 2 < Group 1), topographic slope of well site (Group 3: plain region, Group 1: mountainous region) and groundwater recharge rate (Group 3 < Group 2 < Group 1) with a p-value of 0.05.

수질 장기관측자료를 활용한 우리나라의 지하수 수질변동 특성

  • 김규범;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.94-96
    • /
    • 2003
  • Since 1995, MOCT(Ministry of Construction and Transportation) and KOWACO(Korea Water Resources Corporation) have established the National Groundwater Monitoring Network in South Korea and also MOE(Ministry of Environment) has operated Groundwater Quality Monitoring network. Until 2001, 202 monitoring stations by MOCT and 780 monitoring wells by MOE have been constructed, measured groundwater level and analyzed water samples. Groundwater quality analysis has been conducted two times a year during last 6 years for all monitoring wells. The quality data has about 15 components including pH, COD, Count of Coliform group, and etc.. Trend analysis has been peformed for 6 components(Coliform, pH, COD, NO$_3$-N, Cl and EC) of water quality which are analyzed more than 7 times for total monitoring wells. Two test methods have been used ; Sen's test and Mann-Kendall test. These trend tests have been done at the 0.05 significance level. By the result of Sen's test, Count of Coliform group has either upward or downward trends at 4.3 percent of the monitoring points. pH does at 5.6 percent, COD does at 8.6 percent, Nitrate-Nitrogen does at 13.2 percent, Chloride does at 13.4 percent, and. EC does at 11.6 percent of the monitoring points. The exact causes of the groundwater quality trends are difficult to specify. Notable downward trends in nitrate at many monitoring points may be the result of reduction on some contamination sources. Potential causes include diminished agricultural areas, improvements in sewage treatment and a decrease in atmospheric deposition. Increase in chloride at many monitoring points may be the result of increased non-point source pollution such as road salting and runoff from sprawling paved developments and suburbs.

  • PDF

Gyeongju Earthquakes Recorded in Daily Groundwater Data at National Groundwater Monitoring Stations in Gyeongju (경주 국가지하수관측소 일자료로 본 경주지진 영향)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.80-86
    • /
    • 2016
  • Earthquakes of M5.1, M5.8 and M4.5 occurred in September 12 and 19 respectively in Gyeongju, Gyeongbuk Province. Theses earthquakes inflated fears of people and highlighted necessity of detailed countermeasures because we have considered our country is safe to earthquakes. In the meanwhile, earthquake also impacts groundwater and thus it was recently reported that the Gyeongju Earthquakes affected groundwater there. This study evaluates daily groundwater data collected from five national groundwater monitoring stations (Geoncheon, Sannae, Oedong, Yangbuksin, Cheonbuk) in Gyeongju. The analysis revealed that only groundwater level of bedrock monitoring well hosted in andesite exhibited earthquake impact while no wells in the other four stations hosted in sedimentary rocks showed substantial responses to the earthquakes. This may be derived from the difference of seismic velocity of hosting rocks as well as epicenter distance. Special interest on groundwater monitoring is required to predict earthquakes as precursory phenomena.