• Title/Summary/Keyword: National GHG Reduction

Search Result 131, Processing Time 0.022 seconds

PROCESS OF COMMUNITY-BASED SUSTAINABLE CO2 MANAGEMENT

  • Jaehyun Park;Taehoon Hong
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.262-268
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, CO2 management on a national level is still not an area of focus. Therefore, this study proposed a community-based CO2 management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target CO2 reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based CO2 management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.

  • PDF

Polices Trends for Countermeasure Climate Change in Transportation of Major Countries (주요국가의 교통부문 기후변화협약 대응 정책 동향)

  • Kim, Yong-Ki;Lee, Jae-Young;Lee, Cheul-Kyu;Rhee, Young-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.515-520
    • /
    • 2011
  • The Climate Change has been emerged as one of the most important social and economic issues and is affecting our daily life. The Post-Kyoto Protocol aims to reduce GHG(Greenhouse Gas) emission and mitigate climate change. Under this protocol, developed countries which are classified as Annex I implements programmes and strategies confronting against the climate change. South Korea has set voluntary GHG reduction goal of 30% reduction compared to BAU(Business As Usual) in 2020 and prepares National GHG inventory system and Negotiated Agreements(NA) with industries. It will affect seriously to industry and transport sector and its obligation to reduce GHG emission will be strengthened gradually. Therefore, there will be large impact on industry structure. In Korea, various strategies against climate change are being prepared as researches of development of GHG emission reduction technologies and integrated GHG emission management system in transport sector. In this study, strategy on climate change in transport sector is proposed by being based on developed countries' respond to climate change in transport sector.

  • PDF

Time-Series Analysis and Estimation of Prospect Emissions and Prospected Reduction of Greenhouse Gas Emissions in Chungbuk (온실가스 배출량 시계열 분석과 전망 배출량 및 감축 감재량 추정 - 충북을 중심으로 -)

  • Jung, Okjin;Moon, Yun Seob;Youn, Daeok;Song, Hyunggyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.41-59
    • /
    • 2022
  • In accordance with the enactment of 'the Paris Agreement' in 2015 and 'the Framework Act on Carbon Neutrality and Green Growth for Response to the Climate Crisis' in 2021, each local government has set appropriate reduction target of greenhouse gas to achieve the nationally determined contribution (NDC, the reduction target of 40% compared to 2018) of greenhouse gas (GHG) emissions in 2030. In this study, the current distribution of GHG emissions was analyzed in a time series centered on the Chungbuk region for the period from 1990 to 2018, with the aim of reducing GHG emissions in Chungbuk by 2030 based on the 2030 NDC and scenario. In addition, the prospected reduction by 2030 was estimated considering the projected emissions according to Busines As Usual in order to achieve the target reduction of GHG emissions. Our results showed that GHG emissions in Chungbuk and Korea have been increasing since 1990 owing to population and economic growth. GHG emissions in 2018 in Chungbuk were very low (3.9 %) relative to the national value. Moreover, emissions from fuel combustion, such as cement and lime production, manufacturing and construction industries, and transportation industries, were the main sources. Furthermore, the 2030 target of GHG emission reduction in Chungbuk was set at 40.2% relative to the 2018 value, in accordance with the 2030 NDC and 2050 carbon-zero national scenario. Therefore, when projected emissions were considered, the prospected reduction to achieve the target reduction of GHG emissions was estimated to be 46.8% relative to 2018. The above results highlight the importance of meeting the prospected reduction of GHG emissions through reduction means in each sector to achieve the national and local GHG reduction target. In addition, to achieve the 2030 NDC and 2050 carbon zero, the country and each local government, including Chungbuk, need to estimate projected emissions by year, determine reduction targets and prospect reductions every year, and prepare specific means to reduce GHG emissions.

A Case Study of GHG Reduction Based on Electricity Consumption Pattern of Individual Rooms : In case of Seoul National University (실별 전력 소비패턴에 의거한 온실가스 감축 잠재량 산정 - 서울대학교 관악 캠퍼스를 대상으로 -)

  • Kim, Seok-Young;Park, Moonseo;Lee, Hyun-Soo;Kim, Sooyoung;Jung, Hye-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • As GHG target management is introduced in Korea, designated establishment takes responsibilities to reduce more than 30% of expected GHG emission until 2020. Although decreasing GHG has been requested to universities which consume great amount of energy, there are difficulties to apply high cost countermeasures. Therefore, this research suggest a low cost, easily-applicable energy saving method, and derive potential GHG reduction amount in the case of SNU, Kwan-ak campus. First of all, 11 rooms of different use were chosen as the samples, and energy consumption in each room was measured. Standard models for each room were built through researching on the electric devices in each room. Moreover, energy consumption was computed for each devices through analyzing the pattern of electricity consumption. 32 GHG reduction technology and action program were chosen, and they were applied to the standard models for individual rooms. Through multiplying energy reduction rate of each program to energy consumption of each electric device, maximum energy reduction of each electric device is derived. Through that, Maximum GHG reduction for individual rooms and each month and the total GHG reduction capacity of Kwan-ak campus were computed. It was found out that approximately $5,311tCO_2$-eq can be reduced, when reduction technology and action program suggested by this research are applied. It appeared 24.48% of requested reduction amount to SNU can be reduced, till 2016.

Greenhouse Gas Reduction Scenario from LEAP Model Application to a University Campus-For Hanyang University Ansan Campus (LEAP 모델 적용을 통한 대학단위 온실가스 감축안 도출 - 한양대학교 안산캠퍼스 대상으로)

  • Park, Hyo-Jeong;Jung, Hye-Jin;Yi, Seung-Muk;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.280-287
    • /
    • 2012
  • The sources of greenhouse gases (GHG) at Hanyang University Ansan campus, including direct sources, indirect sources, and others, were investigated in order to establish the GHG inventory. Emission of GHG was calculated with the energy use from each source from 2007 and 2009. The indirect emission (56.7%) due to the electricity significantly contributed to total GHG emission. The scenario for the GHG reduction was designed for both campus administration and members. The reduction potential of GHG was simulated from 2007 to 2020 using Long-range Energy Alternatives Planning (LEAP) model. In case of GHG reduction scenario by campus administration, the GHG can be reduced by 63.34 ton $CO_{2eq}/yr$ for stationary combustion in the direct source, by 221.1 ton $CO_{2eq}/yr$ for mobile combustion in the direct source, and by 4,637.34 ton $CO_{2eq}/yr$ for lighting in the indirect source, compared to 2020 Business As Usual (BAU). In case of GHG reduction action scenario by campus members, the reduction potential of GHG was 1293.76 ton $CO_{2eq}/yr$. Overall, the total GHG emissions in 2020 by the both scenarios can be decreased by 24% compared to 2020 BAU.

Development of Indicators for the National GHG Reduction Technology Selection Based on Delphi Method (델파이 기법을 활용한 국가 온실가스 감축기술 선택 지표 연구)

  • Kim, Kiman;Kang, Moon Jung;Kim, Hyung-ju
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.11-26
    • /
    • 2018
  • A strategic technology selection for GHG reduction is crucial to secure mitigation means. Especially, a technology selection for a public sector is encouraged to consider integrated perspectives due to various stakeholders under public goals. However, previous studies have mainly focused on technological and economic factors, moreover, consistent criteria have not been applied. This study develops indicators for the GHG reduction technology selection from the public perspective based on delphi method with 22 experts. The result provides valid indicators of technology selection for GHG reduction considering an aspect of technology, economics, environment, policy, society. Specifically, 16 indicators from 5 categories on commercialized technology, and 18 indicators from 5 categories on new technology. We expect that those indicators are useful for a decision-making tool of technology selection. Moreover, provide the basis for the study of judgement criteria to evaluate GHG reduction technology.

A Methodology for Evaluating the Effects of Transportation Policies Related to Greenhouse Gas Reduction (교통온실가스 감축정책의 효과분석 방법론 연구)

  • LEE, Kyu Jin;YI, Yongju;CHOI, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • The purpose of this study is to establish a methodology for evaluating quantitative effects of transportation GHG (greenhouse gas) reduction-related policies that were implemented based on the reduction goals of transportation GHG and effective implementation plans. This study uses a modal utility function and demand estimation models as well as a GHG emission basic unit estimation model by each transportation mode based on actual traffic and emission data. The results showed that the effects of GHG reduction policies such as electric vary from region to region, and from vehicle to vehicle. It is also confirmed that an eco-drive promotion policy, one of the lowest budget policies, is expected to contribute to high reduction in GHG. In addition, not only automobile emission improvement policies but also the promotion policies of public transportation are expected to highly reduce GHG as confirmed quantitatively in this study. The results of this study are expected to be useful for national and local governments' evaluation of GHG reduction policies to cope with the post 2020.

A Study on the Greenhouse Gas (CO2) Emission Reduction through Constructing Inventories and Process Diagnostic Techniques in Chemical Industry (A case of Ulsan City, Korea) (화학산업의 인벤토리 구축 및 공정진단을 통한 온실가스 배출 저감에 관한 연구)

  • Ahn, Jun-Ki;Cho, Kyoung-O;Cho, Hyun-Rae;Lee, Man-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3302-3309
    • /
    • 2011
  • This study showed the reduced greenhouse gas(GHG) emission through GHG inventory establishment and process diagnosis for a response to climatic change. Also, it presented a direction for company's response to climatic change. Ulsan from its industrial complex has many energy-intensive companies such as petrochemistry, automobile and shipbuilding, and as we judged that the systematic reduction of GHG emission would make a considerable reduction of GHG emission in national dimension we executed this study from 10 companies. It showed the high rate of direction GHG emissions by its process that 5 of 10 companies calculated GHG emission and built its inventory. Also, in order to reduce energy and GHG, it produced about 227,554 million won of its economic effect and 50,740 ton/yr of its sparing effect.

An Analysis on the Ancillary Benefit of Greenhouse Gases Reduction in Korea

  • Yanghoon Song;Han, Wha-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.41-50
    • /
    • 2003
  • Greenhouse gases (GHG) could lead to global warming, which may bring about various disturbances to global ecosystem. Other than primary benefits that are too extensive, the ancillary benefit from GHG reduction has been estimated to provide justification for national actions. Five scenarios for 5 to 40% reduction of GHG were evaluated for the benefit/cost efficiency, using the cost estimates from a previous study. Their benefits were also estimated using a European model. As a result of this study, it can be concluded that lower reduction scenarios (5∼10%) seem to be more efficient than higher reduction scenarios (30∼40%).

Development of Greenhouse Gas (GHG) Emissions Inventory and Evaluation of GHG Reduction Plans of Kangwon National University (대학의 온실가스 인벤토리 구축 및 감축잠재량 평가 - 강원대학교를 중심으로)

  • Park, Sang-Young;Han, Young-Ji;Oh, A-Ram;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.32-41
    • /
    • 2012
  • Greenhouse gases (GHGs) emissions from Kangwon National University was estimated to be 21,054 ton $CO_2$-eq in 2009, which was approximately 7% higher than that in 2005. Emissions from electricity usage in Scope 2 contributed to the upward annual trend of GHG emissions, comprising about 54.3% of the total GHG emissions. On the other hand, GHG emissions from Scope 1 and Scope 3 contributed approximately 25.3% and 20.4%, respectively. Various GHG reduction plans were also introduced and evaluated in this study. Among three reduction plans including LED substitution, improvement of transportation efficiency, and green campus action plan, the green campus action plan derived the most significant GHG reduction of 5.3% of total emissions. Estimated total reduced GHG emission was $1,570ton\;CO_2-eq\;yr^{-1}$ with all three reduction plans.