• Title/Summary/Keyword: National Defense Data

Search Result 665, Processing Time 0.031 seconds

A Study on the Automatic Pulse Classification Method for Non-cooperative Bi-static Sonar System (비협동 양상태 소나 시스템을 위한 펄스식별 자동화 기법 연구)

  • Kim, Geun Hwan;Yoon, Kyung Sik;Kim, Seong il;Jeong, Eui Cheol;Lee, Kyun Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.158-165
    • /
    • 2018
  • Recently there is a great interest in the bi-static sonar. However, since the transmitter and the receiver operate on different platforms, it may be necessary to operate the system in a non-cooperative mode. In this situation, the detection and localization performance are limited. Therefore, it is necessary to classify the received pulse from the transmitter to overcome the performance limitation. In this paper, we proposed a robust automatic pulse classification method that can be applied to real systems. The proposed method eliminates the effects of noise and multipath propagation through post-processing and improves the pulse classification performance. We also verified the proposed method through the sea experimental data.

Optimization of Sandwich Structures of a Small Aircraft Wing using Automated Aero- Structure Interaction Systems (자동화된 공력-구조 연계 시스템을 이용한 소형항공기 날개 샌드위치구조 최적설계)

  • Park, Chan Woo;Chu, Jae Myeong;Shul, Chang Won;Jun, Seung Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1061-1068
    • /
    • 2013
  • In this research, the design optimization of a composite sandwich has been performed for using as an airplane wing skin. Automated analysis framework for aero-structure interaction is used for calculating load data on the wing. For automated analysis framework, FLUENT is used for computational fluid dynamics (CFD) analysis. CFD mesh is generated automatically by using parametric modeling of CATIA and GAMBIT. A computational structure mechanics (CSM) mesh is generated automatically by the parametric method of the CATIA and visual basic script of NASTRAN-FX. The structure is analyzed by ABAQUS. Composite sandwich optimization is performed by NASTRAN SOL200. Design variables are thicknesses of the sandwich core and composite skin panel plies. The objective is to minimize the weight of the wing and constraints are applied for wing tip displacement, global failure index and local failure indexes.

Numerical Simulation of Diffusion and Flow in Fabrication of Carbon/Carbon Composite Using Chemical Vapor Infiltration (다단계 화학반응과 밀도화 모델을 이용한 탄소/탄소 복합재 화학기상침투 공정의 확산 및 유동 수치해석)

  • Kim, Hye-gyu;Ji, Wooseok;Jo, Namchun;Park, Jonggyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.56-64
    • /
    • 2019
  • In this paper, a model is developed to simulate carbon/carbon composite fabrication using chemical vapor infiltration, considering density and porosity change in the preform and multi-step hydrocarbons reactions. The model considers the preform as a porous medium whose diffusion and flow properties changes due to the porosity. To verify the theoretical model, two numerical analyses were performed for the case that the flow inside the preform is zero and the case that the flow inside the preform is calculated by fluid mechanics. The numerical results showed good agreement with the experimental data.

The Robust Artillery Locating Radar Deployment Model Against Enemy' s Attack Scenarios (적 공격시나리오 기반 대포병 표적탐지레이더 배치모형)

  • Lee, Seung-Ryul;Lee, Moon-Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.217-228
    • /
    • 2020
  • The ROK Army must detect the enemy's location and the type of artillery weapon to respond effectively at wartime. This paper proposes a radar positioning model by applying a scenario-based robust optimization method i.e., binary integer programming. The model consists of the different types of radar, its available quantity and specification. Input data is a combination of target, weapon types and enemy position in enemy's attack scenarios. In this scenario, as the components increase by one unit, the total number increases exponentially, making it difficult to use all scenarios. Therefore, we use partial scenarios to see if they produce results similar to those of the total scenario, and then apply them to case studies. The goal of this model is to deploy an artillery locating radar that maximizes the detection probability at a given candidate site, based on the probability of all possible attack scenarios at an expected enemy artillery position. The results of various experiments including real case study show the appropriateness and practicality of our proposed model. In addition, the validity of the model is reviewed by comparing the case study results with the detection rate of the currently available radar deployment positions of Corps. We are looking forward to enhance Korea Artillery force combat capability through our research.

MND-AF application study for anti-drone system (안티드론 시스템의 국방아키텍쳐 프레임워크 적용 연구)

  • Lee, Dong Joon;Kwon, Hyeong Ahn;Kim, Ji Tae;Jung, Gil Hyun;Yang, Sang Woon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.23-36
    • /
    • 2021
  • Recently, the rapid development of drones is increasing as a variety of threats to important facilities of the country. In order to build an anti-drone system that responds to drones with high technical characteristics, standardization is required in terms of operation, system, and technology. By applying the defense architecture framework, it contributes to the establishment of the optimal system by proposing a standardization plan for the operational and system perspectives of the anti-drone system by creating outputs equivalent to the stage of prior research on weapons systems. It is a prerequisite for building a drone system the operational concept of the anti-drone system, the definition of the drone threat, the function of each component, the interface, the definition of data flow, the system performance and effect scale, etc. Management, security officers, and equipment manufacturers of important national and public facilities on site expect that it will be used as an objective standard at the government level for the component technology of the equipment to respond to the drone threat and the performance required in the environment.

GLSL based Additional Learning Nearest Neighbor Algorithm suitable for Locating Unpaved Road (추가 학습이 빈번히 필요한 비포장도로에서 주행로 탐색에 적합한 GLSL 기반 ALNN Algorithm)

  • Ku, Bon Woo;Kim, Jun kyum;Rhee, Eun Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Unmanned Autonomous Vehicle's driving road in the national defense includes not only paved roads, but also unpaved roads which have rough and unexpected changes. This Unmanned Autonomous Vehicles monitor and recon rugged or remote areas, and defend own position, they frequently encounter environments roads of various and unpredictable. Thus, they need additional learning to drive in this environment, we propose a Additional Learning Nearest Neighbor (ALNN) which is modified from Approximate Nearest Neighbor to allow for quick learning while avoiding the 'Forgetting' problem. In addition, since the Execution speed of the ALNN algorithm decreases as the learning data accumulates, we also propose a solution to this problem using GPU parallel processing based on OpenGL Shader Language. The ALNN based on GPU algorithm can be used in the field of national defense and other similar fields, which require frequent and quick application of additional learning in real-time without affecting the existing learning data.

Development of Architecture Products Management System (아키텍처산출물 관리 시스템 개발)

  • Choi, Nam-Yong;Song, Young-Jae
    • The KIPS Transactions:PartD
    • /
    • v.12D no.6 s.102
    • /
    • pp.857-862
    • /
    • 2005
  • MND(Ministry of National Defense) has developed MND AF(Ministry of National Defense Architecture Framework) and CADM(Core Architecture Data Model to guarantee interoperability among defense information systems. But, it is very difficult to manage architecture product documented through MND AF and CADM. So, there Is necessity for development of modeling tool and repository system which can develop architecture products and manage architecture product informations in common repository In this paper, we developed architecture product management system which supports development and management of meta model and architecture product of MND AF and CADM. Through architecture product management system architect of each agency can construct architecture product in a more effective and efficient way with modeling method and a user can search and refer useful architecture product informations using query function. Also, architecture product management system provides the basis for system integration and interoperability with integration, analysis and comparison of architecture product.

A Study on the Frame Sensor Modeling Using Standard Interface (표준 인터페이스를 적용한 프레임 센서 모델링에 관한 연구)

  • Kwon, Wonsuk;Choi, Sunyong;Lee, Yongwoong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Until recently, photogrammetric applications for processing the satellite images and remotely sensed data have been used in different structure of functions and interfaces for sensor modeling by each developer. Thus, a standardized utilization procedure was necessary to solve the problems, such as expandability, cost, inefficiency of sources which were resulted from different approaches. Therefore, National Geospatial Intelligence Agency (NGA) provided unified interfaces by developing Community Sensor Model (CSM) to sensor models in same way. In this study, we suggested the method of design and analyzed main functions needed modeling for the frame sensor using CSM Application Program Interface (API) provided by NGA. We also applied the designed structure to the modeling. The implemented CSM was verified by groundToImage and imageToGround. In the future, the active R&D is expected with using CSM due to the cost saving effect of software development and remarkable expandability of sensor.

Kinetic Analysis of Energetic Materials Using Differential Scanning Calorimetry (DSC를 이용한 고에너지 물질의 반응속도식 추출과 활용)

  • Kim, Yoocheon;Park, Jungsoo;Yang, Seungho;Park, Honglae;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • The kinetic analysis of energetic materials using Differential Scanning Calorimetry (DSC) is proposed. Friedman Isoconversional method is applied to DSC experiment data and AKTS software is used for analysis. The proposed kinetic scheme has considerable advantage over the standard method based on One-Dimenaionl Time to Explosion (ODTX). Reaction rate and product mass fraction simulation are conducted to validate extracted kinetic scheme. Also a slow cook-off simulation is implemented on $B/KNO_3$ for validating the applicability of the extracted kinetics scheme to a practical thermal experiment.

A Study on Color Reliability of New Combat Uniform Fabrics through Quantitative Analysis of the Color and Color Fastness to Washing (색상 및 세탁견뢰도의 정량적 분석을 통한 신형 전투복 원단의 색상신뢰성 연구)

  • Hong, Seong-don;Kim, Byung-Soon;Jang, Yeonju;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.3
    • /
    • pp.456-464
    • /
    • 2016
  • A new combat uniform is improved for added combat safety with various functions such as survivability, battle conformity and a camouflage performance system. Camouflage performance is an important factor in terms of combat survivability since it makes identification difficult and provide security. The combat uniform is worn under extreme conditions (exposure to ultraviolet light, sweat and friction) and an excellent color fastness to repeated washing is required. In this study, we investigated the color management, durability and discoloration of new combat uniform fabric with a digital pattern for camouflage performance to provide preliminary color management data. We examined color differences between standard fabric and mass-produced combat uniform fabrics, color differences between each military supply contract firm and color changes in combat uniforms after 60 washing cycles. The slight color differences between standard fabric and mass-produced combat uniform fabrics were tolerable under quality criteria of Republic of Korea Ministry of National Defense. However, the differences between the military supply contract firms were recognizable to the naked eye and increased with repeated washing. Continuous research on color fastness under repeated washing and color management is required to standardize reliability from each military supply contract firm for the daytime performance of a combat uniform's camouflage.