Kim, Hak-Kwan;Kang, Moon-Seong;Park, Seung-Woo;Choi, Ji-Yong;Yang, Hee-Jeong
Journal of The Korean Society of Agricultural Engineers
/
v.51
no.1
/
pp.1-9
/
2009
The objective of this paper was to evaluate the auto-calibration with multi-objective optimization method to calibrate the parameters of the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by using nine years (1996-2004) of measured data for the 384-ha Baran reservoir subwatershed located in central Korea. Multi-objective optimization was performed for sixteen parameters related to runoff. The parameters were modified by the replacement or addition of an absolute change. The root mean square error (RMSE), relative mean absolute error (RMAE), Nash-Sutcliffe efficiency index (EI), determination coefficient ($R^2$) were used to evaluate the results of calibration and validation. The statistics of RMSE, RMAE, EI, and $R^2$ were 4.66 mm/day, 0.53 mm/day 0.86, and 0.89 for the calibration period and 3.98 mm/day, 0.51 mm/day, 0.83, and 0.84 for the validation period respectively. The statistical parameters indicated that the model provided a reasonable estimation of the runoff at the study watershed. This result was illustrated with a multi-objective optimization for the flow at an observation site within the Baran reservoir watershed.
Journal of The Korean Society of Agricultural Engineers
/
v.58
no.5
/
pp.59-69
/
2016
This study aims to evaluate the Soil and Water Assessment Tool (SWAT) hourly hydrological modeling performance and compare it with daily SWAT modeling parameters. For the Byeolmicheon catchment ($1.17km^2$) located in the upstream of Gyeongancheon watershed and total 18 storm events measured during 3 years (2011-2013), the hourly SWAT was calibrated and validated using the Green and Ampt (G&A) infiltration equation. The determination coefficient ($R^2$) and Nash-Sutcliffe model efficiency (NSE) of hourly SWAT discharge were 0.81 and 0.73 respectively, and the most sensitive parameter was soil saturated hydraulic conductivity (SOL_K) and calibrated with the average value of 0.075 mm/hr. In addition, the hourly SWAT simulation by G&A was compared with the daily SWAT simulation by SCS-CN (Soil Conservation Service-Curve Number) method for the whole 3 years period. The houlrly G&A results showed $R^2$ and NSE of 0.71 and 0.50, and the daily SCS-CN results were 0.71 and 0.66, respectively. The SOL_K by daily SCS_CN method was calibrated at 75.5 mm/hr, 1,000 times greater than the hourly G&A method. The next sensitive parameters for the hourly simulation were lag time of lateral flow (LAT_TIME) and lag time of surface runoff (SURLAG).
Jang, Sun Sook;Ahn, So Ra;Choi, Joong Dae;Kim, Seong Joon
Journal of The Korean Society of Agricultural Engineers
/
v.57
no.1
/
pp.89-97
/
2015
This study is to assess the effect of non-point source pollution discharge loads between tillage and no-tillage applications for upland crop areas using SWAT (Soil and Water Assessment Tool) watershed modeling. For Byulmi-cheon small rural catchment ($1.17km^2$) located in upstream of Gyeongan-cheon watershed, the rainfall, discharge and stream water quality have been monitored in the catchment outlet since 2011. The SWAT model was calibrated and validated in hourly basis using 19 rainfall events during 2011-2013. The average Nash-Sutcliffe model efficiency and $R^2$ (determination coefficient) for streamflow were 0.67 and 0.79 respectively. Using the 10 % surface runoff reduction from experiment results for no-tillage condition in field plots of 3 % and 8 % slopes under sesami cultivation, the soil saturated hydraulic conductivity for upland crop areas was adjusted from 0.001 mm/hr to 0.0025 mm/hr in average. Under the condition, the catchment sediment, T-N (total nitrogen, TN), and T-P (total phosphorus, TP) discharge loads were reduced by 6.9 %, 7.4 %, and 7.7 % respectively.
Journal of The Korean Society of Agricultural Engineers
/
v.60
no.1
/
pp.111-120
/
2018
The purpose of this study was to develop a ridge regression (RR) model to estimate BOD and TP load using runoff weighted value. The concept of runoff weighted value, based on distributed curve-number (CN), was introduced to reflect the impact of land covers on runoff. The estimated runoff depths by distributed CN were closer to the observed values than those by area weighted mean CN. The RR is a technique used when the data suffers from multicollinearity. The RR model was developed for five flow duration intervals with the independent variables of daily runoff discharge of seven land covers and dependent variables of daily pollutant load. The RR model was applied to Heuk river watershed, a subwatershed of the Han river watershed. The variance inflation factors of the RR model decreased to the value less than 10. The RR model showed a good performance with Nash-Sutcliffe efficiency (NSE) of 0.73 and 0.87, and Pearson correlation coefficient of 0.88 and 0.93 for BOD and TP, respectively. The results suggest that the methods used in the study can be applied to estimate pollutant load of different land cover watersheds using limited data.
Lee, Yong Gwan;Jung, Chung Gil;Kim, Se Hoon;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.34-34
/
2018
본 연구는 다목적 유전자 알고리즘 Non-Dominated Sorting Genetic Algorithm II (NSGA-II)를 활용하여 자동 검보정 알고리즘을 개발하고, 이를 준분포형 수문모형인 SWAT (Soil and Water Assessment Tool) 모형에 적용하여 평가하고자 한다. 집중형 모형과 달리, 분포형 모형은 유역 내 다양한 물리적 변수와 공간 이질성(spatial heterogeneity)을 표현하기 위한 많은 매개변수를 포함하고 있고, 최근에는 기후 변화와 장기 가뭄과 같은 이상 기후에 따른 물 부족, 수질 오염 및 녹조 현상 등을 고려하기 위해 매개변수의 시간적인 변동성을 고려하기 위한 연구도 수행되고 있다. 이에 따라 본 연구에서 개발한 다목적 알고리즘은 다양한 매개변수의 시공간적 특성을 고려할 수 있도록 작성되었으며, Python으로 개발하여 타 모형으로의 확장성 및 범용성을 고려하였다. SWAT 모형의 유출 해석은 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error), 모형 효율성 계수(Nash-Sutcliffe efficiency, NSE) 및 IOA(Index of agreement) 등을 활용해 기존 연구 결과와 비교분석할 수 있도록 하였으며, 사용자의 선택에 따라 다른 목적함수 또한 활용할 수 있도록 하였다. NSGA-II를 활용한 SWAT 모형의 유출 해석은 다목적 함수를 고려함에 따라 실측값과 높은 상관성을 보여줄 것으로 판단되며, 이상 기후 기간 설정에 따른 유동적인 매개변수 변화를 적용할 수 있을 것으로 기대된다.
Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.111-111
/
2018
본 연구의 목적은 조건부 합성 기법(Conditional Merging, CM) 기법을 활용하여 GPM(Global Precipitation Measurement) 위성 자료를 보정하고, 이를 격자기반 분포형 강우-유출 모형(KIneMatic wave STOrm Runoff Model2, KIMSTORM2)에 적용하여 보정된 자료의 효율성을 검토하는데 있다. 모형의 유출 해석은 남강댐 유역($2,293km^2$)을 대상으로 하였으며, 2016년 10월에 발생한 태풍 차바에 대하여 GPM 자료와 CM 기법을 적용한 GPM 자료를 각각 활용하여 결과를 비교하였다. 이 때, 강우자료의 보정은 유역 내 위치한 21개 지점의 지상강우자료를 활용하였으며, 각각의 위성강우자료에 유출 검보정은 남강댐 유역 내 3개의 수위관측 지점(산청, 창촌, 남강댐)을 대상으로 실시하였다. 유출 결과는 결정계수(Coefficient of determination, $R^2$), 모형 효율성 계수(Nash-Sutcliffe efficiency, NSE) 및 유출용적지수(Volume conservation index, VCI)를 이용하여 산정하였다. 지상강우자료와 CM 기법을 통해 보정한 강우자료는 대기의 많은 영향을 받는 위성자료의 특성을 보정하여 공간유출 및 첨두유출을 합리적으로 재현할 수 있을 것으로 예상된다.
Kim, Jin Uk;Lee, Yong Gwan;Chung, Jee Hun;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.103-103
/
2019
본 연구에서는 Terra MODIS 위성영상과 Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 모형을 이용하여 2012년부터 2017년까지 한반도 전국의 증발산량을 산정하고 플럭스 타워 실측 증발산량과 비교하였다. METRIC은 전 세계에 널리 적용된 바 있는 에너지 수지 기반의 Surface Energy Balance Algorithm for Land (SEBAL) 모형의 개념과 기술을 기반으로 현열(Sensible Heat Flux) 추정 모듈을 개선한 모형이다. 본 연구에서 METRIC 모형은 기존 C#으로 개발되어 있던 SEBAL 코드에서 현열 추정 모듈을 수정하였고 연산 속도 개선을 위해 Python으로 재작성하였다. METRIC 모형의 위성 자료로 Terra MODIS 위성의 MOD13A2(16day, 1km) NDVI, MOD11A1(Daily, 1km) Land Surface Temperature (LST) 및 MCD43A3(Daily, 500m) Albedo를 구축하였으며 500m 공간해상도의 Albedo는 1000m 해상도로 resample하여 활용하였다. 기상자료는 기상청 기상관측소의 풍속, 풍속측정높이, 습도, 10분 간격 이슬점 온도, 일사량 자료를 위성 자료와 같은 공간해상도로 내삽(Interpolation)하여 구축하였다. 모형결과 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측 자료와의 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error) relative RMSE (RMSE%), Nash-Sutcliffe efficiency (NSE) 및 IOA(Index of Agreement)를 산정하고, 기존 SEBAL 모형 결과와의 비교를 통해 본 모형의 개선점을 보이고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.382-382
/
2023
기존의 GRM(Grid based rainfall-Runoff Model)에서는 강우-유출 사상에 대한 유출 모의를 주요 대상으로 하였다. 본 연구에서는 GRM 모형에서 연속형 모의가 가능하도록 차단, 증발산, 융설을 모의할 수 있는 모듈을 개발하였다. 차단은 LAI의 연최댓값과 해당월의 값의 비율을 이용해서 계산하며, 증발산은 Blaney-Criddle, Hamon, Hargreaves, Priestly-Taylor 방법을 적용하였다. 융설은 Anderson에 의해서 제안된 방법을 적용하였다. 연속형 모의를 위한 모델 매개변수 설정 인터페이스를 추가하였으며, 기온, 일사량, 일조시간 등의 기상자료를 입력할 수 있게 하고, 계산된 각 수문성분을 출력할 수 있도록 GRM 모형의 입력과 출력 모듈을 개선하였다. 충주댐 유역을 대상으로 개선된 모형을 적용하였다. 공간자료의 해상도는 500m × 500m로 구축하였으며, 수문학적 지형정보와 토양도, 토지피복도를 구축하였다. 기상자료를 강수량, 일최고 기온, 일최저 기온, 일조시간, 일사량을 적용하였다. 증발산은 Hargreaves 방법을 이용하여 모의하였다. 모의 기간은 2001년 ~ 2018년이며, 이 중 2004년까지의 4년은 모델 warming up 기간으로 하고, 적합도 평가는 2005년 ~ 2018년의 모의결과를 이용하였다. 충주댐 유입량 모의결과를 관측값과 비교하였을 때 Nash-Sutcliffe model efficiency coefficient(NSE) 0.84, 상관계수 0.92, 총용적 오차는 0.26%를 나타내어 관측유입량을 잘 재현하였다. 그러므로 본 연구에서 개발된 차단, 증발산, 융설 모의 기법은 적절히 구현된 것으로 판단되며, GRM을 이용한 연속형 모의가 가능한 것으로 나타났다. 향후 연구에서는 좀 더 다양한 유역에 대해 GRM을 이용한 연속형 유출모의 결과를 평가할 필요가 있다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.37-37
/
2023
There is currently a high-accuracy modern forecasting method that uses machine learning algorithms or artificial neural network models to forecast river water levels or flowrate. As a result, this study aims to develop a mathematical model based on artificial neural networks to effectively forecast river water levels upstream of Tranh Culvert in North Vietnam's Bac Hung Hai irrigation system. The mathematical model was thoroughly studied and evaluated by using hydrological data from six gauge stations over a period of twenty-two years between 2000 and 2022. Furthermore, the results of the developed model were also compared to those of the long-short-term memory neural networks model. This study performs four predictions, with a forecast time ranging from 6 to 24 hours and a time step of 6 hours. To validate and test the model's performance, the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and root mean squared error were calculated. During the testing phase, the NSE of the model varies from 0.981 to 0.879, corresponding to forecast cases from one to four time steps ahead. The forecast results from the model are very reasonable, indicating that the model performed excellently. Therefore, the proposed model can be used to forecast water levels in North Vietnam's irrigation system or rivers impacted by tides.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.230-230
/
2023
딥러닝 알고리즘 중 과거의 정보를 저장하는 문제(장기종속성 문제)가 있는 단순 RNN(Simple Recurrent Neural Network)의 단점을 해결한 LSTM(Long short-term memory)이 등장하면서 특정한 유역의 강우-유출 모형을 구축하는 연구가 증가하고 있다. 그러나 하나의 모형으로 모든 유역에 대한 유출을 예측하는 지역화 강우-유출 모형은 서로 다른 유역의 식생, 지형 등의 차이에서 발생하는 수문학적 행동의 차이를 학습해야 하므로 모형 구축에 어려움이 있다. 따라서, 본 연구에서는 국내 12개의 유역에 대하여 LSTM 기반 분포형 지역화 강우-유출 모형을 구축한 이후 강우 이외의 보조 자료에 따른 정확도를 살펴보았다. 국내 12개 유역의 7년 (2012.01.01-2018.12.31) 동안의 49개 격자(4km2)에 대한 10분 간격 레이더 강우, MODIS 위성 이미지 영상을 활용한 식생지수 (Normalized Difference Vegetation Index), 10분 간격 기온, 유역 평균 경사, 단순 하천 경사를 입력자료로 활용하였으며 10분 간격 유량 자료를 출력 자료로 사용하여 LSTM 기반 분포형 지역화 강우-유출 모형을 구축하였다. 이후 구축된 모형의 성능을 검증하기 위해 학습에 사용되지 않은 3개의 유역에 대한 자료를 활용하여 Nash-Sutcliffe Model Efficiency Coefficient (NSE)를 확인하였다. 식생지수를 보조 자료를 활용하였을 경우 제안한 모형은 3개의 검증 유역에 대하여 하천 흐름을 높은 정확도로 예측하였으며 딥러닝 모형이 위성 자료를 통하여 식생에 의한 차단 및 토양 침투와 같은 동적 요소의 학습이 가능함을 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.