Due to climate changes accelerated by global warming, South Korea has experienced regional climate variations as well as increasing severities and frequencies of extreme weather. The precipitation in South Korea during the summer season in 2013 was concentrated mainly in the central region; the maximum number of rainy days were recorded in the central region while the southern region had the minimum number of rainy days. As a result, much attention has been paid to the importance of flood control due to damage caused by spatiotemporal intensive rainfalls. In this study, forecast rainfall data was used for rapid responses to prevent disasters during flood seasons. For this purpose, the applicability of numerical weather forecast data was analyzed using the ground observation rainfall and inflow rate. Correlation coefficient, maximum rainfall intensity percent error and total rainfall percent error were used for the quantitative comparison of ground observation rainfall data. In addition, correlation coefficient, Nash-Sutcliffe efficiency coefficient, and standardized RMSE were used for the quantitative comparison of inflow rate. As a result of the simulation, the correlation coefficient up to six hours was 0.7 or higher, indicating a high correlation. Furthermore, the Nash-Sutcliffe efficiency coefficient was positive until six hours, confirming the applicability of forecast rainfall.
The flood forecasting model currently used in Korea calculates the runoff of basin using the lumped rainfall-runoff model and estimates the river level using the river and reservoir routing models. The lumped model assumes homogeneous drainage zones in the basin. Therefore, it can not consider various spatial characteristics in the basin. In addition, the rainfall data used in lumped model also has the same limitation because of using the point scale rainfall data. To overcome the limitations as mentioned above, many researchers have studied to apply the distributed rainfall-runoff model to flood forecasting system. In this study, to apply the Grid-based Rainfall-Runoff Model (GRM) to the Korean flood forecasting system, the optimal resolution is determined by analyzing the difference of the results of the runoff according to the various resolutions. If the grid size is to small, the computation time becomes excessive and it is not suitable for applying to the flood forecasting model. Even if the grid size is too large, it does not fit the purpose of analyzing the spatial distribution by applying the distributed model. As a result of this study, the optimal resolution which satisfies the accuracy of the bsin runoff prediction and the calculation speed suitable for the flood forecasting was proposed. The accuracy of the runoff prediction was analyzed by comparing the Nash-Sutcliffe model efficiency coefficient (NSE). The optimal resolution estimated from this study will be used as basic data for applying the distributed rainfall-runoff model to the flood forecasting system.
KSCE Journal of Civil and Environmental Engineering Research
/
v.32
no.1B
/
pp.1-7
/
2012
Quasi-two dimensional numerical model (GSTARS) was applied to determine the optimal sediment discharge formula for simulating the sedimentologic characteristics of Hyeongsan river. The field measurements have been conducted to obtain the data, such as sediment discharge, bed material, and channel geometry, for model calibration and verification. The sediment discharge formulas, which have been generally used, have been assessed according to the average error, relative error, RMSE, RRMSE, discrepancy ratio and Nash-Sutcliffe efficiency coefficient for bed changes along the thalweg. From the results, Laursen formula(1958) shows the best performance to simulate the long-term bed change of Hyeongsan river.
SIMHYD and TANK model are used to predict time series of daily rainfall-runoff of Soyang Dam and Youngcheon Dam watershed. The performances of SIMHYD model with 7 parameters and TANK model with17 parameters are compared. Three optimization methods (Genetic algorithm, Pattern search multi-start and Shuffled Complex Evolution algorithm) were applied to study-areas with 3 different types of objective functions. Efficiency of TANK model is higher than that of SIMHYD. Among different types of objective function, Nash-sutcliffe coefficient is found to be the most appropriateobjective function to evaluate applicability of model.
Jang, Won Seok;Moon, Jong Pil;Kim, Nam Won;Yoo, Dong Sun;Kum, Dong Hyuk;Kim, Ik Jae;Mun, Yuri;Lim, Kyoung Jae
Journal of Korean Society on Water Environment
/
v.27
no.1
/
pp.61-72
/
2011
In order to assess hydrologic and nonpoint source pollutant behaviors in a watershed with Soil and Water Assessment Tool (SWAT) model, the accuracy evaluation of SWAT model should be conducted prior to the application of it to a watershed. When calibrating and validating hydrological components of SWAT model, the Nash-Sutcliffe efficiency coefficient (EI) has been widely used. However, the EI value has been known as it is affected sensitively by big numbers among the range of numbers. In this study, a Web-based flow clustering EI estimation system using K-means clustering algorithm was developed and used for SWAT hydrology evaluation. Even though the EI of total streamflow was high, the EI values of hydrologic components (i.e., direct runoff and baseflow) were not high. Also when the EI values of flow group I and II (i.e., low and high value group) clustered from direct runoff and baseflow were computed, respectively, the EI values of them were much lower with negative EI values for some flow group comparison. The SWAT auto-calibration tool estimated values also showed negative EI values for most flow group I and II of direct runoff and baseflow although EI value of total streamflow was high. The result obtained in this study indicates that the SWAT hydrology component should be calibrated until all four positive EI values for each flow group of direct runoff and baseflow are obtained for better accuracy both in direct runoff and baseflow.
Han, Heechan;Choi, Changhyun;Jung, Jaewon;Kim, Hung Soo
Journal of Korea Water Resources Association
/
v.54
no.3
/
pp.157-166
/
2021
Forecasting dam inflow based on high reliability is required for efficient dam operation. In this study, deep learning technique, which is one of the data-driven methods and has been used in many fields of research, was manipulated to predict the dam inflow. The Long Short-Term Memory deep learning with Sequence-to-Sequence model (LSTM-s2s), which provides high performance in predicting time-series data, was applied for forecasting inflow of Soyang River dam. Various statistical metrics or evaluation indicators, including correlation coefficient (CC), Nash-Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS), and error in peak value (PE), were used to evaluate the predictive performance of the model. The result of this study presented that the LSTM-s2s model showed high accuracy in the prediction of dam inflow and also provided good performance for runoff event based runoff prediction. It was found that the deep learning based approach could be used for efficient dam operation for water resource management during wet and dry seasons.
Kang, Hyun-Woo;Ryu, Ji-Chul;Kim, Nam-Won;Kim, Seong-Joon;Engel, Bernard A.;Lim, Kyoung-Jae
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.19-19
/
2011
The appraisals of hydrology model behavior for flow and water quality are generally performed through comparison of simulated data with observed ones. To perform appraisal of hydrology model, some criteria are often used, such as coefficient of determination ($R^2$), Nash and Sutcliffe model efficiency coefficient (NSE), index of agreement (d), modified forms of NSE and d, and relative efficiency criteria NSE and d. These criteria are used not only for hydrology model estimations also for various comparisons of two data sets; This NSE has been often used for SWAT calibration. However, it has been known that the NSE value has some limitations in evaluating hydrology at watersheds under monsoon climate because this statistic is largely affected by higher values in the data set. To overcome these limitations, the SWAT auto-calibration module was enhanced with K-means clustering and direct runoff/baseflow modules. However the NSE is still being used in this module to evaluate model performance. Therefore, the SWAT Auto-calibration module was modified to incorporate alternative efficiency criteria into the SWAT K-means/direct runoff-baseflow auto-calibration module. It is expected that this enhanced SWAT auto-calibration module will provide better calibration capability of SWAT model for all flow regime.
Experimentally predicting the compressive strength (CS) of concrete (for a mix design) is a time-consuming and laborious process. The present study aims to propose surrogate models based on Support Vector Machine (SVM) and Gaussian Process Regression (GPR) machine learning techniques, which can predict the CS of concrete containing nano-silica. Content of cement, aggregates, nano-silica and its fineness, water-binder ratio, and the days at which strength has to be predicted are the input variables. The efficiency of the models is compared in terms of Correlation Coefficient (CC), Root Mean Square Error (RMSE), Variance Account For (VAF), Nash-Sutcliffe Efficiency (NSE), and RMSE to observation's standard deviation ratio (RSR). It has been observed that the SVM outperforms GPR in predicting the CS of the concrete containing nano-silica.
In order to analyze hydraulic characteristics of discharge coefficient, hydraulic jump height, and hydraulic jump length, accompanied sediment transport, in the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and hydraulic characteristics were schematized according to the presence and absence of sediment transport; the correlation of hydraulic characteristics and non-dimensional parameters was analyzed and multiple regression formulae were developed. In the hydraulic characteristics accompanied the sediment transport, by identifying the aspect different from the case that the sediment transport is absent, we verified that it is necessary to introduce variables that can express the characteristics of sediment transport. The multiple regression equations were suggested and each determination coefficient appeared high as 0.749 for discharge coefficient, 0.896 for hydraulic jump height, and 0.955 for hydraulic jump length. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on hydraulic characteristics of discharge coefficient, hydraulic jump height and length.
For the purpose of enhancing usability of NWP (Numerical Weather Prediction), the quantitative precipitation prediction scheme was suggested. In this research, precipitation by leading time was predicted using 3-hour rainfall accumulation by meso-scale numerical weather model and AWS (Automatic Weather Station), precipitation water and relative humidity observed by atmospheric sounding station, probability of rainfall occurrence by leading time in June and July, 2001 and August, 2002. Considering the nonlinear process of ranfall producing mechanism, the ANN (Artificial Neural Network) that is useful in nonlinear fitting between rainfall and the other atmospheric variables. The feedforward multi-layer perceptron was used for neural network structure, and the nonlinear bipolaractivation function was used for neural network training for converting negative rainfall into no rain value. The ANN simulated rainfall was validated by leading time using Nash-Sutcliffe Coefficient of Efficiency (COE) and Coefficient of Correlation (CORR). As a result, the 3 hour rainfall accumulation basis shows that the COE of the areal mean of the Korean peninsula was improved from -0.04 to 0.31 for the 12 hr leading time, -0.04 to 0.38 for the 24 hr leading time, -0.03 to 0.33 for the 36 hr leading time, and -0.05 to 0.27 for the 48 hr leading time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.