• Title/Summary/Keyword: Nasal drug delivery

Search Result 12, Processing Time 0.023 seconds

Recent Advances in Intranasal Drug Delivery (경비 약물전달체계의 최근의 진보)

  • Park, Gee-Bae;Lee, Yong-Suk;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.77-96
    • /
    • 1992
  • In recent years intranasal administration of drugs has received great attention as a convenient and efficent method of drug delivery because of its potential to improve the systemic effect of substances with a poor oral bioavailability. In addition to offering advantages such as rapid absorption, fast onset of action and avoiding the first -pass effect, it provides for delivery of drugs from very lipophilic drugs such as steroids to polar and hydrophilic drugs such as peptides and proteins. However, little is still known about the nature of various barriers existing in the nasal mucosae as well as mechanism by which these molecules are absorbed. This review article therefore intends to discuss nasal physiology, experimental methods and evaluation of absorption from the nasal cavity, factors influencing nasal absorption, mechanism of nasal absorption, approaches to improve the residence time and to obtain the sustained-release effect of intranasally administered drugs, promoters and mechanism for the enhancement of nasal absorption, Several examples for intranasal delivery of various systemically effective drugs will be reviewed and illustrated. Drug metabolism in the nasal mucosae and problems associated with intranasal administration of drugs will be also discussed.

  • PDF

In vitro Nasal Cell Culture Systems for Drug Transport Studies

  • Cho, Hyun-Jong;Termsarasab, Ubonvan;Kim, Jung-Sun;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.321-332
    • /
    • 2010
  • Growing interest in the nasal route as a drug delivery system calls for a reliable in vitro model which is crucial for efficiently evaluating drug transport through the nasal cells. Various in vitro cell culture systems has thus been developed to displace the ex vivo excised nasal tissue and in vivo animal models. Due to species difference, results from animal studies are not sufficient for estimating the drug absorption kinetics in humans. However, the difficulty in obtaining reliable human tissue source limits the use of primary culture of human nasal epithelial cells. This shortage of human nasal tissue has therefore prompted studies on the "passage" culture of nasal epithelial cells. A serially passaged primary human nasal epithelial cell monolayer system developed by the air-liquid interface (ALI) culture is known to promote the differentiation of cilia and mucin gene and maintain high TEER values. Recent studies on the in vitro nasal cell culture systems for drug transport studies are reviewed in this article.

Effect of Sodium Taurodihydrofusidate on Nasal Drug Delivery: Differences in Its Concentration and Penetrant Molecular Weight

  • Hosoya, Ken-ichi;Kubo, Hiroyuki;Takashi-Akutsu;Hideshi-Natsume;Kenji-Sugibayashi;Yasunori-Morimoto
    • Archives of Pharmacal Research
    • /
    • v.17 no.2
    • /
    • pp.57-59
    • /
    • 1994
  • The effect of sodium taurodihydrofusidate (STDHF) on drug permeation across nasal mucosa was studied in vitro using Ussing type diffusion chamber. Disodium cromoglicate (DSCG, M.W.5123) and fluorescein isothiocyanate-dextran (FD) of different molecular wieghts (M.W. 4400-71200) were used as model drugs. Pemeation profiles of DSCG and FDs showed a typical pseudo steady-state curve with short lag time. The pemeability coefficient of FD (M.W. 9400) sigmodially increased with increasing STDHF concentration. It also enhanced the DSCG pemeation. Interestingly the enhancement efficacy was independent of molecular weight of penetrants.

  • PDF

Hydrogels for Drug Delivery System:-Colon-Specific Delivery- (히드로겔을 이용한 약물수송시스템)

  • Park, Ki-Dong;Jeong, Seo-Young;Kim, Young-Ha
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.4
    • /
    • pp.251-266
    • /
    • 1992
  • A major problem with the peptide-based drugs is that these drugs must generally be administered by injection. Therefore, there is considerable research interest in alternative routes of delivery, such as buccal, nasal, gastrointestinal route and etc. Site-specific drug delivery to the colon, as an alternative to parenteral drug delivery, is of interest for the delivery of peptide-based drugs as well as the delivery of low molecular weight drugs for the treatment of colonic disease, This review describes some considerations of colon-specific drug delivery using hydrogels.

  • PDF

Hyaluronic Acid in Drug Delivery Systems

  • Jin, Yu-Jin;Ubonvan, Termsarasab;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.33-43
    • /
    • 2010
  • Hyaluronic acid (HA) is a biodegradable, biocompatible, non-toxic, non-immunogenic and non-inflammatory linear polysaccharide, which has been used for various medical applications including arthritis treatment, wound healing, ocular surgery, and tissue augmentation. Because of its mucoadhesive property and safety, HA has received much attention as a tool for drug delivery system development. It has been used as a drug delivery carrier in both nonparenteral and parenteral routes. The nonparenteral application includes the ocular and nasal delivery systems. On the other hand, its use in parenteral systems has been considered important as in the case of sustained release formulation of protein drugs through subcutaneous injection. Particles and hydrogels by various methods using HA and HA derivatives as well as by conjugation with other polymer have been the focus of many studies. Furthermore, the affinity of HA to the CD44 receptor which is overexpressed in various tumor cells makes HA an important means of cancer targeted drug delivery. Current trends and development of HA as a tool for drug delivery will be outlined in this review.

Nasal Administration of Granisetron to Rats (흰쥐를 이용한 Granisetron함유 경비 투여제제의 평가 및 그 적용)

  • Woo, Jong-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.363-369
    • /
    • 2006
  • Granisetron is a selective 5-HT3 receptor antagonist that is used therapeutically for the prevention of vomiting and nausea associated with emetogenic cancer chemotherapy. Although this drug is commercially available for intravenous and oral dosage, there is a need for intranasal delivery formulations in specific patient populations in which the use of these dosage forms may be unfeasible and/or inconvenient. A rapid and specific high-performance liquid chromatography method with mass spectrometric detection(LC-MS) was developed and validated for the analysis of granisetron in plasma after nasal administration in rats. This method has been validated for concentrations ranging from 5 to 1000 ng/ml with simple treatment. This technique has high level reproducibility, accuracy, and sensitivity. The method described was found to be suitable for the analysis of all samples collected during preclinical pharmacokinetic investigations of granisetron in rats after nasal administration. This study was aimed to investigate the feasibility of nasal delivery of granisetron for the elimination of vomiting. The effects of osmolarity, dosage volume at the same dose and applied dose on the nasal absorption of granisetron in rats were observed. No significant difference in the effect of osmolarity and dosage volume at the same dose was observed. As the applied dose of granisetron in nasal formulation increased, the absorption increased linearly. Based on these results it appears that only the applied dose(drug mass) determines the nasal absorption of granisetron. The bioavailability of granisetron on nasal administration of 4 mg/kg appeared to be comparable to that of intravenous administration of the same dose. These results suggest that granisetron can be efficiently delivered nasally and the development of nasal formulation will be feasible.

Microencapsulation Methods for Delivery of Protein Drugs

  • Yoon Yeo;Namjin Baek;Park, Kinam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.212-230
    • /
    • 2001
  • Recent advances in recombinant DNA technology have resulted in development of many new protein drugs. Due to the unique properties of protein druges, they have to be delivered by parenteral injection Although delivery of protein drugs by other routes, such as pulmonary and nasal routes, has shown some promises, to date most protein drugs are administered by par-enteral routs. For long-term delivery of protein drugs by parenteral administration, they have been formulated into biodegradable microspheres. A number of microencapsulation methods have been developed, and the currently used microencapsulation methods are reviewed here, The microen-capsulation methods have been divided based on the method used. They are: solvent evapora-tion/extraction; phase separation (coacervation);spray drying; ionotropic gelation/polyelectrolyte complexation; interfacial polyumerization and supercritical fluid precipitation. Each method is de-scribed fro its applications, advantages, and limitations.

  • PDF

Effect of Ion-Pair on Jejunal and Nasal Absorption of Cefotaxime (세포탁심의 공장 및 비점막흡수에 미치는 이온쌍의 효과)

  • Park, Gee-Bae;Jeon, Seung;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.353-363
    • /
    • 1995
  • The purpose of this study was to investigate the intestinal and nasal absorption enhancement of cefotaxime (CTX) by ion-pairing with counterions and to design an effective oral and intranasal drug delivery system for antibiotics. Counterions for absorption promotion were cationic surfactants [cetylpyridinium chloride (CP), cetrimide (CT) and benzalkonium chloride (BA)]. In the presence of counterions, the apparent partition coefficient of cefotaxime was increased depending on the molar concentration of the counterions. Anion interference was observed for ion-pairing of cefotaxime with counterions because of the counterbalance between an anion and counterions. The present study employed the in situ simultaneous nasal and intestinal perfusion technique in rats. The apparent permeabilities $(P_{app})$ of cefotaxime were $1.43{\pm}0.04{\times}10^{-5}\;cm/sec(mean{\pm}S.E)$ in the nasal cavity and 0 in the jejunum, respectively, which indicated that the intrinsic absorptivity of cefotaxime was greater in the nasal cavity than in the jejunum. When ionupairing formers were used, the decreasing order of apparent cefotaxime permeability $(P_{app},\;10^{-5}\;cm/sec)$, corrected for surface area of absorption, was as followings: $BA\;(7.50{\pm}0.36)\;>\;CT\;(4.92{\pm}0.24)\;>\;CP\;(3.01{\pm}0.17)$ in the jejunum and $BA\;(22.31{\pm}1.36)\;>\;CP\;(18.24{\pm}0.81)\;>\;CT \;(16.22{\pm}1.87)$ in the nasal cavity. The increase in permeability of cefotaxime was about 13-fold in the rat nasal cavity and was marked in the rat jejunum for ion-pairing with counterions as compared to those without ion-pairing. The damages of jejunal and nasal mucosal membrane by counterions were observed within approximately 2hrs after removal of ion-pair of cefotaxime with counterions from the nasal cavity and jejunum. These results suggest that CP can be used as an ion-pairing former in the jejunum and CP and CT can be used as ion-pairing formers in the nasal cavity for cefotaxime, as well as for poorly absorbed drugs with a negative charge due to ionization.

  • PDF

Computational Analysis of Airflow in Upper Airway for Drug Delivery of Asthma Inhaler (천식 흡입기의 약물전달을 위한 상기도내의 유동해석)

  • Lee, Gyun-Bum;Kim, Sung-Kyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Drug delivery in human upper airway was studied by the numerical simulation of oral airflow. We created an anatomically accurate upper airway model from CT scan data by using a medical image processing software (Mimics). The upper airway was composed of oral cavity, pharynx, larynx, trachea, and second generations of branches. Thin sliced CT data and meticulous refinement of model surface under the ENT doctor's advice provided more sophisticated nasal cavity models. With this 3D upper airway models, numerical simulation was conducted by ANSYS/FLUENT. The steady inspiratory airflows in that model was solved numerically for the case of flow rate of 250 mL/s with drug-laden spray(Q= 20, 40, 60 mL/s). Optimal parameters for mechanical drug aerosol targeting of predetermined areas was to be computed, for a given representative upper airways. From numerical flow visualization results, as flow-rate of drug-laden spray increases, the drag spray residue in oral cavity was increased and the distribution of drug spray in trachea and branches became more homogeneous.