• 제목/요약/키워드: Nasal airway resistance

검색결과 19건 처리시간 0.026초

코질환과 수면무호흡증 (Nasal Diseases and Its Impact on Sleep Apnea and Snoring)

  • 김창희;이재서
    • 수면정신생리
    • /
    • 제11권1호
    • /
    • pp.17-21
    • /
    • 2004
  • Nasal congestion is one of the most common symptoms of medical complaints. Snoring is caused by vibration of the uvula and the soft palate. Nasal obstruction may contribute not only to snoring and obstructive sleep apnea (OSA) but also impair application of continuous nasal positive airway pressure (CPAP), which is the most widely employed treatment for OSA. Total or near-total nasal obstruction leads to mouth breathing and has been shown to cause increased airway resistance. However, the exact role of the nasal airway in the pathogenesis of OSA is not clear and there is no consensus about the role of nasal obstruction in snoring and sleep apnea. Some reports have failed to demonstrate any correlation between snoring and nasal obstruction. On the other hand, opposing reports suggest that nasal disease may cause sleep disorders and that snoring can be improved after nasoseptal surgery. Reduced cross-sectional area causes increased nasal resistance and predisposes the patient to inspiratory collapse of the oropharynx, hypopharynx, or both. Discrete abnormalities of the nasal airway, such as septal deformities, nasal polyps, and choanal atresia and with certain mucosal conditions such as sinusitis, allergic rhinitis and inferior turbinate hypertrophy can cause snoring or OSA. Thus, these sources of nasal obstruction should be corrected medically or surgically for the effective management of OSA and adjunctive for CPAP.

  • PDF

흡연이 비저항에 미치는 영향 (Effect of Smoking on Nasal Resistance)

  • 오천환;김장욱
    • 대한기관식도과학회지
    • /
    • 제5권2호
    • /
    • pp.113-118
    • /
    • 1999
  • Background & Objectives : Nasal resistance which is halfly responsible for airway resistance is known to be influenced by hypoxia, hypercapnia, exercise, pregnancy, alcohol, ammonia and smoking. Smoking is a common part of our sociocultural environment and we have many a times been introduced to its various adverse effects, which have usually been more focused on lung problems. The purpose of this study is to determine any relationship between smoking and nasal resistance and to evaluate it's effective sites. Materials and Methods : Acoustic rhinometry was performed in 25 smokers and 25 nonsmokers who had no nasal symptoms nor abnormal rhinoscopic findings, and used an acoustic rhinometry to measure the distance from nose-piece to the C-notch, cross sectional area at the C-notch, and volume of the nasal cavity from nose-piece to 7cm. The authors compared the data between the two groups. Results : The cross sectional area at the C-notch was significantly decreased(p<0.05) in smoking group. The distance to the C-notch and the volume of nasal cavity were decreased likely in smoking group but there were no significant difference(p>0.05). Conclusion : Smoking reduced the cross sectional area at the C-notch, so increased the nasal resistance. The underlying mechanisms seems to be decreased nasal mucosal reactivity and congestion of the nasal mucosa. The authors believe there should follow more studies on pathophysiologic mechanisms and the histopathologic changes which involve the effect of smoking on nasal structures.

  • PDF

수면무호흡증과 상기도저항 증후군에서 Nasal Airflow의 압력측정 및 상기도 압력변화에 대한 연구 (The Nasal Airflow Pressure Monitoring and the Measurement of Airway Pressure Changes in Obstructive Sleep Apnea Syndrome and Upper Airway Resistance Syndrome)

  • 김후원;홍승봉
    • 수면정신생리
    • /
    • 제7권1호
    • /
    • pp.27-33
    • /
    • 2000
  • 수면 중 나타나는 호흡장애를 좀 더 정확하게 측정하기 위해 고안된 비강 공기압 측정기의 민감도를 온도감지 센서와 비교하기 위해 30명의 수면무호흡 증후군 환자와 6명의 상기도 저항증후군 환자에서 저호흡-무호흡 지수와 각성지수를 비교하였다. 그리고 상기도 저항 증후군에서 각성을 일으키는 상기도 압력변화에 대해 알아보기 위하여 온도감지 센서에서 발견되지 않은 저호흡-무호흡과 관련된 각성에서 상기도의 압력을 측정하였다. 비강 공기압 측정기가 기존의 온도감지 센서보다 훨씬 더 민감한 방법임을 알 수 있었다(p<0.05). 비강 공기압 측정기로 검사하여 저호흡-무호흡지수가 평균 41%가 증가되었고 호흡장애가 심하지 않은 경증의 수면무호흡 증후군이나 상기도 저항 증후군에서 더 많이 증가하였다. 비강 공기압 측정기로 검사한 저호흡-무호흡지수를 비교하면 상기도 저항 증후군이 수면무호흡 증후군의 가장 경미한 형태라는 것을 알 수 있었다. 상기도 저항 증후군에서 나타나는 각성에서 상기도의 압력 변화는 일정한 범위에서 나타나지 않았고 다양한 압력 분포를 보였으며 수면 중 호흡장애의 정도가 심해질수록 압력변화의 폭이 더 커지는 양상을 보였다. 비강 공기압 측정기가 기존의 온도감지 센서보다 더 민감하지만 아직까지 해결해야 할 문제가 일부 남아 있어서 온도 감지 센서를 완전히 대체하기는 어려울 것으로 보인다. 그러나 경증의 수면무호흡 증후군이나 상기도 저항 증후군을 진단하는 데에는 많은 도움이 될 것이다. 특히 상기도 저항 증후군의 진단에 기존에는 상기도 압력 측정이 필요하다고 하였으나 비강 공기압 측정기를 이용하면 불편한 상기도 압력 측정은 필요 없을 것으로 생각된다.

  • PDF

대사성 산증, 기도저항 변화 및 미주신경 절단이 구호흡 발생에 미치는 영향 (THE INFLUENCE OF METABOLIC ACIDOSIS, AIRWAY RESISTANCE AND VAGOTOMY ON THE DEVELOPMENT OF MOUTH BREATHING)

  • 손우성;양원식
    • 대한치과교정학회지
    • /
    • 제20권1호
    • /
    • pp.47-59
    • /
    • 1990
  • Respiration is one of the most important functions which are carried out in stomatognathic system. When nasal orifice is obstructed or the resistance of upper airway is increased mouth breathing is initiated. Mouth breathing is regarded as an important etiologic factor of dentofacial anomalies. This experiment was performed to observe the influences of metabolic acidosis, tracheal resistance and vagotomy on mouth breathing. After rabbits were anesthetized with sodium pentobarbital, a pair of wire electrode was inserted into mylohyoid muscle, anterior belly of digastric muscle and dilator naris muscle to record EMG activity. Femoral vein and artery were cannulated for infusion of 0.3N HCl and collection of blood sample to determine the blood pH, and tracheal intubation was done to control airway resistance. Mouth breathing was induced by metabolic acidosis. Increase of the airway resistance through tracheal cannula intensified the activity of dilator naris, mylohyoid and digastric muscle. The higher the resistance, the larger the EMG amplitude. After bilateral vagotomy, respiratory volume and inspiatory time were increased and the activities of dilator naris, mylohyoid and digastric muscle were strengthened. It was concluded that the muscle activity related to mouth breathing was induced by metabolic acidosis and increase of tracheal tube resistance.

  • PDF

High-flow nasal cannula oxygen therapy in children: a clinical review

  • Kwon, Ji-Won
    • Clinical and Experimental Pediatrics
    • /
    • 제63권1호
    • /
    • pp.3-7
    • /
    • 2020
  • High-flow nasal cannula (HFNC) is a relatively safe and effective noninvasive ventilation method that was recently accepted as a treatment option for acute respiratory support before endotracheal intubation or invasive ventilation. The action mechanism of HFNC includes a decrease in nasopharyngeal resistance, washout of dead space, reduction in inflow of ambient air, and an increase in airway pressure. In preterm infants, HFNC can be used to prevent reintubation and initial noninvasive respiratory support after birth. In children, flow level adjustments are crucial considering their maximal efficacy and complications. Randomized controlled studies suggest that HFNC can be used in cases of moderate to severe bronchiolitis upon initial low-flow oxygen failure. HFNC can also reduce intubation and mechanical ventilation in children with respiratory failure. Several observational studies have shown that HFNC can be beneficial in acute asthma and other respiratory distress. Multicenter randomized studies are warranted to determine the feasibility and adherence of HFNC and continuous positive airway pressure in pediatric intensive care units. The development of clinical guidelines for HFNC, including flow settings, indications, and contraindications, device management, efficacy identification, and safety issues are needed, particularly in children.

상악골 급속 확장시(Rapid Palatal Expansion) 비강통기도 검사(Rhinomanometry)를 통한 비강기도 저항(Nasal Airway Resistance) 변화에 관한 연구 (CHANCES OF THE NASAL AIRWAY RESISTANCE WITH RAPID PALATAL EXPANSION USING RHINOMANOMETRY)

  • 백형선;고성휘;이정권
    • 대한치과교정학회지
    • /
    • 제21권1호
    • /
    • pp.17-29
    • /
    • 1991
  • The purpose of this study was to provide quantitative data describing the effect of rapid palatal expansion (RPE) on nasal airway resistance (NAR). RPE is an orthopedic procedure which is commonly used to widen the maxilla in skeletal Class III patients. 18 subjects (9 males and 9 females, mean age: 10 years 7 months) were selected from the Orthodontics in Yongdong Severance Hospital. Recordings of NAR were taken by active anterior method prior to expansion, immediately after desired maximum expansion, and after approximately 3 months and 6 months, and 1 year. All data was recorded and statistically processed with the SPSS program of IBM PC system. The results are as followings . 1. The average initial NAR of the subjects was 3.84 cm $H_2O/LPS\;(SD{\pm}1.34)$. It was greater than the average NAR of the normal subjects. 2. Among 18 subjects, 9 subjects showed reduction of NAR and 9 subjects showed no specific change of NAR after expansion. 3 An average reduction in NAR after immediately expansion was statistically significant at the 0.05 level. 4. The reduction appeared stable throughout the post treatment observation period of 1 year after expansion. From these results, it was suggested that RPE is a useful method to reduce NAR.

  • PDF

A Moonlighting Protein Secreted by a Nasal Microbiome Fortifies the Innate Host Defense Against Bacterial and Viral Infections

  • Gwanghee Kim;Yoojin Lee;Jin Sun You;Wontae Hwang;Jeewon Hwang;Hwa Young Kim;Jieun Kim;Ara Jo;In ho Park;Mohammed Ali;Jongsun Kim;Jeon-Soo Shin;Ho-Keun Kwon;Hyun Jik Kim;Sang Sun Yoon
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.31.1-31.18
    • /
    • 2023
  • Evidence suggests that the human respiratory tract, as with the gastrointestinal tract, has evolved to its current state in association with commensal microbes. However, little is known about how the airway microbiome affects the development of airway immune system. Here, we uncover a previously unidentified mode of interaction between host airway immunity and a unique strain (AIT01) of Staphylococcus epidermidis, a predominant species of the nasal microbiome. Intranasal administration of AIT01 increased the population of neutrophils and monocytes in mouse lungs. The recruitment of these immune cells resulted in the protection of the murine host against infection by Pseudomonas aeruginosa, a pathogenic bacterium. Interestingly, an AIT01-secreted protein identified as GAPDH, a well-known bacterial moonlighting protein, mediated this protective effect. Intranasal delivery of the purified GAPDH conferred significant resistance against other Gram-negative pathogens (Klebsiella pneumoniae and Acinetobacter baumannii) and influenza A virus. Our findings demonstrate the potential of a native nasal microbe and its secretory protein to enhance innate immune defense against airway infections. These results offer a promising preventive measure, particularly relevant in the context of global pandemics.

소아치과 환자의 깊은 진정시 호기가스 제거 방법에 따른 호흡대역에서 Nitrous Oxide 농도 변화 (THE NITROUS OXIDE CONCENTRATION IN BREATHING ZONE ACCORDING TO SCAVENGING METHODS DURING DEEP SEDATION OF PEDIATRIC DENTAL PATIENTS)

  • 이충원;윤형배
    • 대한소아치과학회지
    • /
    • 제30권1호
    • /
    • pp.124-131
    • /
    • 2003
  • 최근 치과영역에서 아산화질소(Nitrous Oxide)를 이용한 의식하 진정과 필은 진정의 임상 적용이 증가함에 따라 수술실 또는 진료실 환경이 아산화질소로 오염될 수 있다. 비록 낮은 농도일지라도 장기간 아산화질소에 노출 시 자연유산의 증가, 기형아 출산 증가, 말초신경염 및 운동신경 장애 등과 같은 부작용을 초래하는 것으로 알려져 있다. 호흡시 흡입 공기의 구성성분의 변화를 줄 수 있는 구강 입구로부터 반경 12 inch 이내 영역인 호흡대역(Breathing zone)에서 아산화질소 농도는 치료자에게 영향을 주게된다. 소아 환자에게 주로 적용되는 깊은 진정시는 환자의 구호흡양에 따라서 호흡대역에서 아산화질소의 농도에 영향을 주게되므로, 깊은 진정시 구호흡의 증가 원인을 규명하기 위해 잉여가스 배출 방법을 달리하여 호흡대역에서 아산화질소 농도를 측정 비교하여 다음과 같은 결론을 얻었다. 1. 깊은 진정을 시행하는 경우 호흡대역에서 아산화질소의 농도는 공급 가스량 증가에 의한 비기도 저항 증가에 따라 증가하는 양상을 보였다. 호흡대역에서 아산화질소 농도 증가는 구호흡 증가에 의한 것이며 구호흡은 비기도 저항과 관계가 있다 할 수 있다. 즉 비기도 저항 증가는 구호흡의 한 요인이라 할 수 있다. 음압을 사용한 호기가스 배출장치를 사용하여도 NIOSH에서 권장하는 허용치에는 미치지 못하였고 이를 위해서는 팬이나 다른 제거 장치가 함께 사용되어야 한다. 2. 구강편도의 크기는 기도 저항이 적은 경우 즉 음압을 사용하여 호기가스 제거하는 경우 구호흡에 영향을 주었다.

  • PDF

비중격 성형술 및 하비잡개 절제술 후 비개존도 측정을 위한 Nasometer와 제1포만트 측정의 유용성 (Significance of Nasometer and First Formant for Nasal Patency After Septoplasty and Turbinoplasty)

  • 진성민;강현국;이경철;박상욱;이성채;이용배
    • 대한후두음성언어의학회지
    • /
    • 제8권2호
    • /
    • pp.161-165
    • /
    • 1997
  • Background : The rhinomanometry and acoustic rhinometry can assess e nasal passage dynamically and statically Recently, analytic methods such as nasometer and sound spectrogram are gaining wide attention to evaluate the nasality objectively. Objectives : firstly to determine if ere was a relationship between the new methods and nasal airway resistance, and secondly to establish if the measurement of nasalance and sound spectrum could be used as an alternative to rhinomanometry and acoustic rhinometry. Materials and Methods : Thirty two patients who underwent either septoplasty and turbinectomy for nasal obstruction were studied. And their ages ranged form 15 to 45 years, with an average of 26.1 years. The rhinomanometry, nasometer, sound spectrogram were performed at preoperative and postoperative 4 weeks day. Results : After operation, subjective symptoms and rhinomanometric results were significantly improved but nasalance and slope of nana, mama and mamma passage had not meningful change. The significnat changes were noted in nasalance and first nasal formant frequency of nasal consonant of velum(angang). Conclusion : Nasometer and sound spectrogram had a limitation for the measure of nasal patency.

  • PDF

폐쇄성 수면 무호흡 증후군과 상기도 저항 증후군의 진단적 및 임상적 차이 (Diagnostic and Clinical Differences in Obstructive Sleep Apnea Syndrome and Upper Airway Resistance Syndrome)

  • 최영미
    • 수면정신생리
    • /
    • 제18권2호
    • /
    • pp.63-66
    • /
    • 2011
  • It has been controversial whether upper airway resistance syndrome (UARS) is a distinct syndrome or not since it was reported in 1993. The International Classification of Sleep Disorders classified UARS under obstructive sleep apnea syndrome (OSAS) in 2005. UARS can be diagnosed when the apnea-hypopnea index (AHI) is fewer than 5 events per hour, the simultaneously calculated respiratory disturbance index (RDI) is more than 5 events per hour due to abnormal non-apneic non-hypopneic respiratory events accompanying respiratory effort related arousals (RERAs), and oxygen saturation is greater than 92% at termination of an abnormal breathing event. Although esophageal pressure measurement remains the gold standard for detecting subtle breathing abnormality other than hypopnea and apnea, nasal pressure transducer has been most commonly used. RERAs include phase A2 of cyclical alternating patterns (CAPs) associated with EEG changes. Symptoms of OSAS can overlap with UARS, but chronic insomnia tends to be more common in UARS than in OSAS and clinical symptoms similar with functional somatic syndrome are also more common in UARS. In this journal, diagnostic and clinical differences between UARS and OSAS are reviewed.