• Title/Summary/Keyword: Narrow Rectangular Channel

Search Result 23, Processing Time 0.016 seconds

Experimental study of bubble flow behavior during flow instability under uniform and non-uniform transverse heat distribution

  • Al-Yahia, Omar S.;Yoon, Ho Joon;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2771-2788
    • /
    • 2020
  • Experiments are conducted to study bubble flow behavior during the instability of subcooled boiling under uniform and non-uniform transverse heating. The non-uniform heat distribution introduces nonuniform bubble generation and condensation rates on the heated surface, which is different from the uniform heating. These bubble generation and condensation characteristics introduce a non-uniform local pressure distribution in the transverse direction, which creates an extra non-uniform pressure on the flowing bubbles. Therefore, different bubble flow behavior can be observed between uniform and non-uniform heating conditions. In the uniform heating, bubble velocity fluctuations are low, and the bubbles travel straight along the axial direction. In the non-uniform heating, more fluctuation in the bubble velocity occurs at low mass flow rate and high subcooled inlet temperatures, and reverse flow is observed. Additionally, the bubbles show a zigzag trajectory when they pass through the channel, which indicates the existence of cross flow in the transverse direction.

Microflow of dilute colloidal suspension in narrow channel of microfluidic-chip under Newtonian fluid slip condition

  • Chun Myung-Suk;Lee Tae Seok;Lee Kangtaek
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.207-215
    • /
    • 2005
  • We present a finite difference solution for electrokinetic flow in rectangular microchannels encompassing Navier's fluid slip phenomena. The externally applied body force originated from between the nonlinear Poisson-Boltzmann field around the channel wall and the flow-induced electric field is employed in the equation of motion. The basic principle of net current conservation is applied in the ion transport. The effects of the slip length and the long-range repulsion upon the velocity profile are examined in conjunction with the friction factor. It is evident that the fluid slip counteracts the effect by the electric double layer and induces a larger flow rate. Particle streak imaging by fluorescent microscope and the data processing method developed ourselves are applied to straight channel designed to allow for flow visualization of dilute latex colloids underlying the condition of simple fluid. The reliability of the velocity profile determined by the flow imaging is justified by comparing with the finite difference solution. We recognized the behavior of fluid slip in velocity profiles at the hydrophobic surface of polydimethylsiloxane wall, from which the slip length was evaluated for different conditions.

A New Bussgang Blind Equalization Algorithm with Reduced Computational Complexity (계산 복잡도가 줄어든 새로운 Bussgang 자력 등화 알고리듬)

  • Kim, Seong-Min;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1012-1015
    • /
    • 2011
  • The decision-directed blind equalization algorithm is often used due to its simplicity and good convergence property when the eye pattern is open. However, in a channel where the eye pattern is closed, the decision-directed algorithm is not guaranteed to converge. Hence, a modified Bussgang-type algorithm using a hyperbolic tangent function for zero-memory nonlinear(ZNL) function has been proposed and applied to avoid this problem by Filho et al. But application of this algorithm includes the calculation of hyperbolic tangent function and its derivative or a look-up table which may need a large amount of memory due to channel variations. To reduce the computational and/or hardware complexity of Filho's algorithm, in this paper, an improved method for the decision-directed algorithm is proposed. In the proposed scheme, the ZNL function and its derivative are respectively set to be the original signum function and a narrow rectangular pulse which is an approximation of Dirac delta function. It is shown that the proposed scheme, when it is combined with decision-directed algorithm, reduces the computational complexity drastically while it retains the convergence and steady-state performance of the Filho's algorithm.