• Title/Summary/Keyword: Nanowires synthesis

Search Result 154, Processing Time 0.021 seconds

Field Emission Property of ZnO Nanowire with Nanocone Shape (나노뿔 형태로 제작된 ZnO 나노선의 전계방출 특성)

  • No, Im-Jun;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.590-594
    • /
    • 2012
  • ZnO nanowires were fabricated by hydrothermal synthesis technique for field emission device application. Al-doped zinc oxide (AZO) thin films were prepared as seed layer of catalyst for the ZnO nanowire synthesis, for which conductivity of the seed layer was tried to be improved for enhancing the field emission property of the ZnO nanowire. The AZO seed layer revealed specific resistivity of $ 7.466{\times}10^{-4}[{\Omega}{\cdot}cm]$ and carrier mobility of 18.6[$cm^2$/Vs]. Additionally, upper tip of the prepared ZnO nanowires was treated by hydrochloric acid (HCl) to form a nanocone shape of ZnO nanowire, which was aimed for enhanced focusing of electric field on that and resultingly to improve field emission property of the ZnO nanowires. The ZnO nanowire with nanocone shape revealed decreased threshold electric field and increased current density than those of the simple ZnO nanowires.

Synthesis of GaN nanowires using thermal chemical vapor deposition (열화학기상증착법을 이용한 GaN nanowire 합성)

  • 류승철;이태재;이철진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.931-934
    • /
    • 2001
  • GaN nanowires has much interest as one-dimensional materials for blue light LED. GaN-based materials have been the subject of intensive research for blue light emission and high temperature/high power electronic devices. In this letter, the synthesis of GaN nanowires by the reaction of mixture of GaN nanowires by the reaction of mixture of Ga meta and GaN powder with NH$_3$ using thermal chemical vapor deposition is reported. X-ray diffraction, energy dispersive x-ray spectrometer, scanning electron microscopy, and transmission electron microscopy indicate that those GaN nanowires with hexagonal wurtzite structure were about 60nm in diameter and up to several hundreds of micrometers in length.

  • PDF

Synthesis and Applications of Noble Metal and Metal Silicide and Germanide 1-Dimensional Nanostructures

  • Yoon, Ha-Na;Yoo, Young-Dong;Seo, Kwan-Yong;In, June-Ho;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2830-2844
    • /
    • 2012
  • This review covers recent developments in our group regarding the synthesis, characterization and applications of single-crystalline one-dimensional nanostructures based on a wide range of material systems including noble metals, metal silicides and metal germanides. For the single-crystalline one-dimensional nanostructures growth, we have employed chemical vapor transport approach without using any catalysts, capping reagents, and templates because of its simplicity and wide applicability. Au, Pd, and Pt nanowires are epitaxially grown on various substrates, in which the nanowires grow from seed crystals by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. We also present the synthesis of numerous metal silicide and germanide 1D nanostructures. By simply varying reaction conditions, furthermore, nanowires of metastable phase, such as $Fe_5Si_3$ and $Co_3Si$, and composition tuned cobalt silicides (CoSi, $Co_2Si$, $Co_3Si$) and iron germanides ($Fe_{1.3}Ge$ and $Fe_3Ge$) nanowires are synthesized. Such developments can be utilized as advanced platforms or building blocks for a wide range of applications such as plasmonics, sensings, nanoelectronics, and spintronics.

Evolutional Transformations of Copper Nanoparticles to Copper Oxide Nanowires

  • Gang, Min-Gyu;Yun, Ho-Gyu;Kim, Yeong-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.2-18.2
    • /
    • 2011
  • We study and analyze here a novel and simple approach to produce copper oxide nanowires in a methanol as an alternative to chemical synthesis routs and VLS-growth method. First, copper oxide nanowires are grown from copper nanoparticles in methanol at $60^{\circ}C$. Nanoparticles are synthesized via inert gas condensation, one of the dry processes. Synthesized nanowires were confirmed via XRD, FESEM and TEM. As a result, all particles have grown to Cu2O nanowires (20~30 nm in diameter, 5~10 um in length; aspect ratio >160~500). Next, these synthesized oxide nanowires are reduced copper nanowires in the furnace under hydrogen flow at $200{\sim}450^{\circ}C$. The evolution of oxide nanowires and their transformation to copper nanowires is studied as a function of time.

  • PDF

Synthesis of ZnO nanowires and their optical characteristic properties (ZnO 나노와이어의 합성 및 광학적 특성)

  • 박광수;이종수;강명일;김항성;성만영;김상식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.43-49
    • /
    • 2002
  • Gray-colored materials were synthesized from ball-milled ZnO powders under a thermal annealing at 1380$^{\circ}C$ with an argon carrier gas for 3 hours. The synthesized materials were identified to be wurtzitic hexagonal structured ZnO nanowires by X-ray diffraction and scanning electron microscopy. The ZnO nanowires have the long cylinder-like shape of which cross-section is a circle, and these nanowires are in the range 15∼40 nm width and 10-70 $\mu\textrm{m}$ length, respectively. Transmission electron microscopy revealed that these nanowires are single-crystalline and grow along [110] direction. The optical properties of the ZnO nanowires were investigated with photoluminescence. The analytic results revealed that ZnO nanowires have the singly ionized oxygen vacancies in the surface lattices, as they emit strong green light in room temperature PL. In addition, the growth mechanism of the ZnO nanowires can be described by the vapor-solid procedures.

  • PDF

Synthesis of ZnO Nanowires and their Characteristic Properties (ZnO 나노와이어의 합성 및 특성)

  • 박광수;이종수;강명일;성만영;김상식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.651-657
    • /
    • 2002
  • Gray-colored materials were synthesized from ball-milled ZnO powders under a thermal annealing at $1380^{\circ}C$ with an argon carrier gas for 3 hours. The synthesized materials were identified to be wurtzitic hexagonal structured ZnO nanowires by X-ray diffraction and scanning electron microscopy. The ZnO nanowires have the long cylinder-like shape of which cross-section is a circle, and these nanowires are in the range 15~40nm width and 10~70 $\mu m$ length, respectively. Transmission electron microscopy revealed that these nanowires are single-crystalline and grow along [110] direction. The optical properties of the ZnO nanowires were investigated with photoluminescence. The analytic results revealed that ZnO nanowires have the singly ionized oxygen vacancies in the surface lattices, as they emit strong green light in room temperature PL. In addition, the growth mechanism of the ZnO nanowires can be described by the vapor-solid procedures.

Synthesis of Yttrium Oxide Nanowire by Hydrothermal Method (수열합성법을 이용한 이트륨 산화물 나노와이어의 합성)

  • Kim, Kyung-Ki;Kim, Yong-Jin;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.73-77
    • /
    • 2011
  • $Y(OH)_3$ nanowires were synthesized by a hydrothermal reaction of metallic Y with aqueous solution of LiOH. The morphology and the size of the nanowires changed with varying the volume of the LiOH solution inside the autoclave. $Y(OH)_3$ nanowires transformed to $Y_2O_3$ by a subsequent heat-treatment without morphological change. By a proper control of hydrothermal reaction parameter and heat-treatment, the yield of pure $Y_2O_3$ nanowires up to 97% was attained.

Effect of Oxygen in the Synthesis of ZnO Nanowires (ZnO 나노선의 합성에서의 미량산소의 영향)

  • Park, Kyung-Su;Choi, Young-Jin;Park, Jae-Gwan;Kang, Gyo-Sung;Lim, Dong-Gun;Park, Jae-Hwan
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.458-462
    • /
    • 2007
  • The effect of oxygen in the synthesis of oxide nanowires by using carbothermal reduction process have been studied thermodynamically and kinetically. By using laboratory air, ZnO nanowires could be fabricated in the carbothermal reduction process and a metal oxidation process. As the processing pressure decreases, the diameter of the nanowires decreases and the oxygen vacancy increases. As the processing pressure increases, the oxygen vacancy decreases and the shape of the ZnO becomes plate-like.

Nanogenerator Device Based on Piezoelectric Active Layer of ZnO-Nanowires/PVDF Composite (ZnO-나노와이어/PVDF 복합체를 압전 활성층으로 한 나노발전기 소자)

  • Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.740-745
    • /
    • 2014
  • ZnO nanowires were grown by hydrothermal synthesis process and piezoelectric poly vinylidene fluoride (PVDF) was then coated on top of the ZnO-nanowires by spray-coating technique. The composite layer of ZnO-nanowires/PVDF was applied to an energy harvesting device based on piezoelectric-conversion mechanism. A defined mechanical force was given to the nanogenerator device to evaluate their electric power generation characteristics, where output current density and voltage were examined. Electric power generation property of the ZnO-nanowires/PVDF based nanogenerator device was compared to that of the nanogenerator device with ZnO-nanowires as single active layer. Effect of the ZnO-nanowires on improvement of power generation was discussed to examine its feasibility for the nanogenerator device.