• 제목/요약/키워드: Nanostructured $TiO_2$

검색결과 56건 처리시간 0.027초

수열합성법을 이용한 TiO2 나노 입자의 합성 (Synthesis of Nano-sized TiO2 Powder using a Hydrothermal Process)

  • 김강혁;이우진;김동규;이성근;이상화;김인수
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.543-550
    • /
    • 2010
  • This paper investigated the synthesis conditions of nano-sized $TiO_2$ powder in a hydrothermal process at a temperature range of $100{\sim}180^{\circ}C$ considering the precipitation agent, precipitation pH, reaction temperature and time. Titanium hydroxide formed by $NH_4OH$ exhibited a lower crystallization temperature than that by NaOH and formed less aggregated $TiO_2$ particles. As the precipitation pH increased above 8, the shape of the particles changed from spherical to needle form, which appeared to be caused by dissolution and re-precipitation of the titanium hydroxide in an alkali environment.

나노결정입자의 연기 제거 효과 가능성 평가 및 신규 물질 검토에 관한 연구 (Study on the Effectiveness of Nanostructured Particles and Other Potential Materials in Clearing Smoke)

  • 한동훈;천성수
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.49-54
    • /
    • 2008
  • 나노결정입자와 일반 입자를 이용하여 $60cm{\times}60cm{\times}180cm$의 밀폐 공간에서 연기제거 성능을 평가해보았다. MgO, $CeO_2$, $Al_2O_3$, ZnO, $TiO_2$등의 나노결정입자와 $NaHCO_3$ 등의 일반입자를 사용하였다. 실험은 입자를 30초, 1분, 2분 간격으로 연기에 분사하여 시간에 따른 연기 제거 성능을 관찰해 보았고, 아울러 3, $6\;kgf/cm^2$등의 입자 분사 압력 변화에 따른 연기 제거 성능도 평가해 보았다. 평가 결과, $TiO_2{\fallingdotseq}MgO$ > ZnO > $CeO_2$ > $NaHCO_3$ > $Al_2O_3$의 순으로 연기 제거 성능이 우수하였다. MgO와 $TiO_2$를 분사한 경우 자연스럽게 연기가 제거 되는 속도보다 약 10배 정도로 빠르게 연기가 제거되었다. 분사압력이 $6\;kgf/cm^2$에서 $3\;kgf/cm^2$로 감소하면, 입자가 연기와 부딪히는 힘이 약하고 분출양이 작아서 연기 제거 성능도 아울러 감소한 것으로 판단된다. 연기 제거 성능은 입자의 특성, 분출 압력, 분출 양, 분사 노즐의 크기 등에 영향을 받는다. 따라서 효과적인 연기제거를 위해서는 이러한 조건을 최적화하는 것이 중요하다. 본 연구는 이러한 연기 제거 입자가 실제 화재에 적용하는 것을 최종적 목표로 한다.

  • PDF

실리카를 함유하지 않는 생체활성 칼슘인산염 글라스-세라믹스의 합성 및 특성 (Preparation and Characteristics of Bioactive Silica-free Calcium Phosphate Glass-ceramics)

  • 송창원;이주혁;양태영;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제48권3호
    • /
    • pp.217-221
    • /
    • 2011
  • Glass-ceramic materials, which consist of glass matrix phase containing crystalline ${\beta}-Ca_3(PO_4)_2$ and ${\beta}-Ca_2P_2O_7$, have been prepared by heating at $750-900^{\circ}C$ of calcium phosphate invert glasses in the silica-free $CaO-P_2O_5-TiO_2-Na_2O$, system. With increasing heating temperature from 750 to $900^{\circ}C$, the crystallite size of precipitated ${\beta}-Ca_3(PO_4)_2$ in glass with $55CaO{\cdot}35P_2O_5{\cdot}3TiO_2{\cdot}7Na_2O$ (mol%) composition increased from 48 to 91 nm. With the extension of the immersion time in dilute acetic acid solution (pH = 5) to ${\geq}$200 min, the degree of dissolution of $Ca^{2+}$ and $P^{5+}$ ions in the glass-ceramics was linearly increased and the solution was constantly maintained at pH = ~7. Biomimetic nanostructured (62-88 nm in average dia.), sphere-shaped hydroxyapatite was homogeneously formed on the surface of the glass-ceramics when socked for 7-14 days in a Hanks' solution, indicating bioactivity of the prepared glass-ceramics.

Voltammetric Determination of Droxidopa in the Presence of Tryptophan Using a Nanostructured Base Electrochemical Sensor

  • Yaghoubian, Halimeh;Jahani, Shohreh;Beitollahi, Hadi;tajik, Somayeh;Hosseinzadeh, Rahman;Biparva, Pouria
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권2호
    • /
    • pp.109-117
    • /
    • 2018
  • A novel carbon paste electrode modified with $Cu-TiO_2$ nanocomposite, 2-(ferrocenylethynyl)fluoren-9-one (2FF) and ionic liquid (IL) (2FF/$Cu-TiO_2$/IL/CPE) was fabricated and employed to study the electrocatalytic oxidation of droxidopa, using cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV) as diagnostic techniques. It has been found that the oxidation of droxidopa at the surface of modified electrode occurs at a potential of about 295 mV less positive than that of an unmodified CPE. DPV exhibits a linear dynamic range from $5.0{\times}10^{-8}$ to $4.0{\times}10^{-4}M$ and a detection limit of 30.0 nM for droxidopa. Finally this modified electrode was used for simultaneous determination of droxidopa and tryptophan. Also the 2FF/$Cu-TiO_2$/IL/CPE shows excellent ability to determination of droxidopa and tryptophan in real samples.

CdSe Quantum Dots Sensitized TiO2 Electrodes for Photovoltaic Cells

  • Yum, Jun-Ho;Choi, Sang-Hyun;Kim, Seok-Soon;Kim, Dong-Yu;Sung, Yung-Eun
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.257-261
    • /
    • 2007
  • The electronic properties of quantum dots can be tuned by changing the size of particles without any change in their chemical composition. CdSe quantum dots, the sizes of which were controlled by changing the concentrations of Cd and Se precursors, were adsorbed on $TiO_2$ photoelectrodes and used as sensitizers for photovoltaic cells. For applications of CdSe quantum dot as sensitizers, $CdSe/TiO_2$ films on conducting glass were employed in a sandwich-type cell that incorporated a platinum-coated conductive glass and an electrolyte consisting of an $I^-/I_3^-$ redox. The fill factor (FF) and efficiency for energy conversion ($\c{c}$) of the photovoltaic cell was 62 % and 0.32 %, respectively.

에어로졸공정에 의한 다공성 TiO2분말의 제조 및 공극특성 (Fabrication and Characterization of Porous TiO2 Powder by Aerosol Process)

  • 장한권;장희동;박진호;조국;길대섭
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.479-485
    • /
    • 2008
  • Aerosol templating 법을 이용하여 두 종류의 출발물질 용액($TiO_2$ 나노분말/PS 콜로이드 혼합용액 및 TTIP/PS 혼합용액)으로부터 mesopore 및 macropore를 동시에 가지는 다공성 $TiO_2$ 나노구조체 분말을 제조하였다. $TiO_2$에 대한 PS 분말의 혼합비 및 반응기 온도가 다공성 나노구조체 분말의 특성에 미치는 영향을 조사하였다. $TiO_2$ 나노분말을 출발 물질로 사용한 경우, $PS/TiO_2$ 무게 혼합비를 0.79에서 1.31로 증가시킴에 따라 macropore의 증가가 SEM을 통하여 관찰되었으며 비표면적과 mesopore volume은 각각 $31.6m^2/g$에서 $39.1m^2/g$으로, $0.068cm^3/g$에서 $0.89cm^3/g$으로 증가하였다. TTIP 전구체를 사용한 경우, 동일조건에서 제조한 분말의 비표면적 및 mesopore volume이 각각 67% 및 75% 감소하였다.

Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response

  • Kang, Suhee;Pawar, Rajendra C.;Park, Tae Joon;Kim, Jin Geum;Ahn, Sung-Hoon;Lee, Caroline Sunyong
    • 한국세라믹학회지
    • /
    • 제53권4호
    • /
    • pp.393-399
    • /
    • 2016
  • We have successfully fabricated 3D (3-dimensional) nanostructures of $TiO_2$ coated with a $g-C_3N_4$ layer via hydrothermal and sintering methods to enhance photoelectrochemical (PEC) performance. Due to the coupling of $TiO_2$ and $g-C_3N_4$, the nanostructures exhibited good performance as the higher conduction band of $g-C_3N_4$, which can be combined with $TiO_2$. To fabricate 3D nanostructures of $g-C_3N_4/TiO_2$, $TiO_2$ was first grown as a double layer structure on FTO (Fluorine-doped tin oxide) substrate at $150^{\circ}C$ for 3 h. After this, the $g-C_3N_4$ layer was coated on the $TiO_2$ film at $520^{\circ}C$ for 4 h. As-prepared samples were varied according to loading of melamine powder, with values of loading of 0.25 g, 0.5 g, 0.75 g, and 1 g. From SEM and TEM analysis, it was possible to clearly observe the 3D sample morphologies. From the PEC measurement, 0.5 g of $g-C_3N_4/TiO_2$ film was found to exhibit the highest current density of $0.12mA/cm^2$, along with a long-term stability of 5 h. Compared to the pristine $TiO_2$, and to the 0.25 g, 0.75 g, and 1 g $g-C_3N_4/TiO_2$ films, the 0.5 g of $g-C_3N_4/TiO_2$ sample was coated with a thin $g-C_3N_4$ layer that caused separation of the electrons and the holes; this led to a decreasing recombination. This unique structure can be used in photoelectrochemical applications.

기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 Ti3Al-Al2O3 복합재료 제조 및 기계적 특성 (Mechanical Properties and Fabrication of Nanostructured Ti3Al-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering)

  • 손인진;왕희지;서창열;조성욱;김원백
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.374-379
    • /
    • 2011
  • Nano-powders of $Ti_3Al$ and $2Al_2O_3$ were synthesized from $3TiO_2$ and 5Al powders by high energy ball milling. A nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and $Ti_3Al$. Nanocrystalline materials, have received much attention as advanced engineering materials due to their improved physical and mechanical properties. The relative density of the composite was 99.5%. The average obtained hardness and fracture toughness values were 1510 kg/$mm^2$ and $9\;MPa{\cdot}m^{1/2}$, respectively.

기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 1.5TiAl-Al2O3 복합재료 제조 및 기계적 특성 (Mechanical Properties and Fabrication of Nanostructured 1.5TiAl-Al2O3 Composite by Pulsed Current Activated Sintering)

  • 김원백;왕희지;노기민;조성욱;임재원;손인진
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.310-315
    • /
    • 2012
  • Nano-powders of 1.5TiAl and $Al_2O_3$ were synthesized from $1.5TiO_2$ and 3Al powders by high energy ball milling. Nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and 1.5TiAl. The relative density of the composite was 99.5%. The average hardness and fracture toughness values obtained were $1250kg/mm^2$ and $10MPa{\cdot}m^{1/2}$, respectively.

Hydrothermal Synthesis of $TiO_2$ Nanowire Array for Osteoblast Adhesion

  • Yun, Young-Sik;Kang, Eun-Hye;Hong, Min-Eui;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.275-275
    • /
    • 2013
  • Osteoblast is one of cells related with osseointegration and many research have conducted the adhesion of osteoblast onto the surface of implant. In the osseointegration, biocompatibility of the implant and cell adhesion to the surface are important factors. The researches related to cell adhesion have a direction from micro-scaled surface roughness to nano-scaled surface roughness with advancing nanotechnology. A cell reacts and sense to stimuli from extracellular matrix (ECM) and topography of the ECM [1]. Thus, for better osseointegration, we should provide an environment similar to ECM. In this study, we synthesize TiO2 nanowires using hydrothermal reaction because TiO2 provides inertness to titanium on its surface and enables it used as an implant material for the orthopedic treatment such as fixation of the bone fracture [2]. Ti substrate is immersed into NaOH aqueous solution. The solution are heated at $140{\sim}200^{\circ}C$ for various time (10~720 minutes). After heat treatment, we take out the sample and immerse it into HCl aqueous solution for 1 hour. The acid treated sample is heated again at $500^{\circ}C$ for 3 hours [3]. Then, we culture osteoblast on the TiO2 nanowires. For investigating cell adhesion onto nanostructured surface, we conduct several tests such as MTT assay, ALP (Alkaline phosphatase) activity assay, measuring calcium expression, and so on. These preliminary results of the cell culture on the nanowires are foundation for investigating cell-material interaction especially with nanostructure interaction.

  • PDF