• 제목/요약/키워드: Nanoscale

검색결과 895건 처리시간 0.027초

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

나노스케일에서의 표면형상 및 재료변화에 대한 마찰거동 고찰 (Investigation of the Frictional Behavior with respect to Surface Geometry and Surface Material at Nanoscale)

  • 성인하;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.36-41
    • /
    • 2001
  • In this work, the changes in the friction force(lateral force) with respect to nanoscale geometric variation were investigated using an Atomic Force Microscope and a Lateral Force Microscope. It could be concluded that the changes in the friction force correspond well to the slope change rather than the surface slope itself, and that the influence of slope change on the frictional behavior is dependent on the magnitude of the slope and the torsional stiffness of the cantilever. Also, the nominal friction force is found to be more significantly affected by the material and the physical-chemical state of the surface rather than by nanoscale geometric steps. However, the change in nanoscale geometric details of the surface cause instantaneous change and slight variation in the friction signal.

  • PDF

나노스케일에서의 비선형 동역학 (Nonlinear Dynamics at the Nanoscale)

  • 이수일;홍상혁;박준형;이장무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.125-128
    • /
    • 2004
  • AFM(Atomic Force Microscope) becomes a versatile tool in the nanoscale measurements and processes. Especially the tapping mode is a very useful mode in AFM operation to measure and process at the nanoscale. Although the tapping mode has a great potential for the novel techniques such as phase imaging, however, it is not clearly known the fundamental mechanics affected by complex tip-sample interactions. This paper shows the various nonlinear dynamic features in tapping mode AFM microcantilevers including hysteretic jumps and period doublings of the microcantilevers. Also it is discussed the complex dynamics of CNT(Carbon Nanotube) probes and the opportunities on the nanoscale nonlinear dynamics.

  • PDF

A novel approach for designing of variability aware low-power logic gates

  • Sharma, Vijay Kumar
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.491-503
    • /
    • 2022
  • Metal-oxide-semiconductor field-effect transistors (MOSFETs) are continuously scaling down in the nanoscale region to improve the functionality of integrated circuits. The scaling down of MOSFET devices causes short-channel effects in the nanoscale region. In nanoscale region, leakage current components are increasing, resulting in substantial power dissipation. Very large-scale integration designers are constantly exploring different effective methods of mitigating the power dissipation. In this study, a transistor-level input-controlled stacking (ICS) approach is proposed for minimizing significant power dissipation. A low-power ICS approach is extensively discussed to verify its importance in low-power applications. Circuit reliability is monitored for process and voltage and temperature variations. The ICS approach is designed and simulated using Cadence's tools and compared with existing low-power and high-speed techniques at a 22-nm technology node. The ICS approach decreases power dissipation by 84.95% at a cost of 5.89 times increase in propagation delay, and improves energy dissipation reliability by 82.54% compared with conventional circuit for a ring oscillator comprising 5-inverters.

레이저산란패턴 기반 나노 래핑 표면 거칠기의 실험적 모델링 및 추정에 관한 연구 (Study on Experimental Modeling and Estimation of Roughness of Nanoscale Lapping Surface Based on Laser Scattering Patterns)

  • 홍연기;김경범
    • 대한기계학회논문집A
    • /
    • 제35권1호
    • /
    • pp.107-114
    • /
    • 2011
  • 본 논문에서는 나노 래핑 표면의 형상과 레이저산란 패턴 사이의 실험적 모델링에 관한 연구를 하였다. 우선, 반사표면에서 나타나는 산란광 속성들을 고찰하여 암시야 기반의 레이저산란 검사 메커니즘을 구성하였다. 이 메커니즘을 이용한 레이저산란 패턴 분석의 경우, 나노 래핑 표면 형상으로부터 산란된 레이저산란 성분은 불규칙하게 사선형태로 교차됨을 알 수 있다. 또한, 실험 계획법을 기반으로 도출된 매개변수로 적용된 최적의 레이저산란 영상에서 나노 래핑 표면 거칠기와 레이저산란 성분 사이의 상관관계를 회귀분석법을 이용하여 수학적 모델링을 시도 하였다. 이 모델의 검증을 위해 나노 래핑 표면 3 종류의 거칠기에 대해 50 번의 반복실험을 수행한 결과, 제시된 수학적 모델은 실제 거칠기 값에 근접하게 추정할 수 있음을 보였다.