• Title/Summary/Keyword: Nanoplates

Search Result 94, Processing Time 0.02 seconds

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

Kinetically Controlled Growth of Gold Nanoplates and Nanorods via a One-Step Seed-Mediated Method

  • Hong, Soonchang;Acapulco, Jesus A.I. Jr.;Jang, Hee-Jeong;Kulkarni, Akshay S.;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1737-1742
    • /
    • 2014
  • In this research, we further developed the one-step seed mediated method to synthesize gold nanoparticles (GNPs) and control their resulting shapes to obtain hexagonal, triangular, rod-shaped, and spherical gold nanostructures. Our method reveals that the reaction kinetics of formation of GNPs with different shapes can be controlled by the rate of addition of ascorbic acid, because this is the critical factor that dictates the energy barrier that needs to be overcome. This in turn affects the growth mechanism process, which involves the adsorption of growth species to gold nanoseeds. There were also observable trends in the dimensions of the GNPs according to different rates of addition of ascorbic acid. We performed further analyses to investigate and confirm the characteristics of the synthesized GNPs.

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates

  • Shan, Wubin;Deng, Zulu;Zhong, Hao;Mo, Hu;Han, Ziqiang;Yang, Zhi;Xiang, Chengyu;Li, Shuzhou;Liu, Peng
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.551-559
    • /
    • 2020
  • On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.

A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates

  • Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.223-240
    • /
    • 2015
  • In this work, a nonlocal quasi-3D trigonometric plate theory for micro/nanoscale plates is proposed. In order to introduce the size influences, the Eringen's nonlocal elasticity theory is utilized. In addition, the theory considers both shear deformation and thickness stretching effects by a trigonometric variation of all displacements within the thickness, and respects the stress-free boundary conditions on the top and bottom surfaces of the plate without considering the shear correction factor. The advantage of this theory is that, in addition to considering the small scale and thickness stretching effects (${\varepsilon}_z{\neq}0$), the displacement field is modelled with only 5 unknowns as the first order shear deformation theory (FSDT). Analytical solutions for vibration of simply supported micro/nanoscale plates are illustrated, and the computed results are compared with the available solutions in the literature and finite element model using ABAQUS software package. The influences of the nonlocal parameter, shear deformation and thickness stretching on the vibration behaviors of the micro/nanoscale plates are examined.

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.

Thermomechanical behavior of Macro and Nano FGM sandwich plates

  • Soumia, Benguediab;Tayeb, Kebir;Fatima Zohra, Kettaf;Ahmed Amine, Daikh;Abdelouahed, Tounsi;Mohamed, Benguediab;Mohamed A., Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.83-106
    • /
    • 2023
  • In this work, the static behavior of FGM macro and nano-plates under thermomechanical loading. Equilibrium equations are determined by using virtual work principle and local and non-local theory. The novelty of the current model is using a new displacement field with four variables and a warping function considering the effect of shear. Through this analysis, the considered sandwich FGM macro and nanoplates are a homogeneous core and P-FGM faces, homogeneous faces and an E-FGM core and finally P-FGM faces and an E-FGM core. The analytical solution is obtained by using Navier method. The model is verified with previous published works by other models and very close results are obtained within maximum 1% deviation. The numerical results are performed to present the influence of the various parameters such as, geometric ratios, material index as well as the scale parameters are investigated. The present model can be applicable for sandwich FG plates used in nuclear, aero-space, marine, civil and mechanical applications.

Propagating and evanescent waves in a functionally graded nanoplate based on nonlocal theory

  • Cancan Liu;Jiangong Yu;Bo Zhang;Xiaoming Zhang;Xianhui Wang
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.463-474
    • /
    • 2023
  • The purpose of this paper is to present the analysis of propagating and evanescent waves in functionally graded (FG) nanoplates with the consideration of nonlocal effect. The analytical integration nonlocal stress expansion Legendre polynomial method is proposed to obtain complete dispersion curves in the complex domain. Unlike the traditional Legendre polynomial method that expanded the displacement, the presented polynomial method avoids employing the relationship between local stress and nonlocal stress to construct boundary conditions. In addition, the analytical expressions of numerical integrations are presented to improve the computational efficiency. The nonlocal effect, inhomogeneity of medium and their interactions on wave propagation are studied. It is found that the nonlocal effect and inhomogeneity of medium reduce the frequency bandwidth of complex evanescent Lamb waves, and make complex evanescent Lamb waves have a higher phase velocity at low attenuation. The occurrence of intersections of propagating Lamb wave in the nonlocal homogeneous plate needs to satisfy a smaller Poisson's ratio condition than that in the classical elastic theory. In addition, the inhomogeneity of medium enhances the nonlocal effect. The conclusions obtained can be applied to the design and dynamic response evaluation of composite nanostructures.

Free vibration analysis of trapezoidal Double Layered plates embedded with viscoelastic medium for general boundary conditions using differential quadrature method

  • S. Abdul Ameer;Abbas Hameed Abdul Hussein;Mohammed H. Mahdi;Fahmy Gad Elsaid;V. Tahouneh
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.429-441
    • /
    • 2024
  • This paper studies the free vibration behavior of trapezoidal shaped coupled double-layered graphene sheets (DLGS) system using first-order shear deformation theory (FSDT) and incorporating nonlocal elasticity theory. Two nanoplates are assumed to be bonded by an interlayer van der walls force and surrounded by an external kelvin-voight viscoelastic medium. The governing equations together with related boundary condition are discretized using a mapping-differential quadrature method (DQM) in the spatial domain. Then the natural frequency of the system is obtained by solving the eigen value matrix equation. The validity of the current study is evaluated by comparing its numerical results with those available in the literature and then a parametric study is thoroughly performed, concentrating on the series effects of angles and aspect ratio of GS, viscoelastic medium, and nonlocal parameter. The model is used to study the vibration of DLGS for two typical deformation modes, the in-phase and out-of-phase vibrations, which are investigated. Numerical results indicate that due to Increasing the damping parameter of the viscoelastic medium has reduced the frequency of both modes and this medium has been able to overdamped the oscillations and by increasing stiffness parameters both in-phase and out-of-phase vibration frequencies increased.

A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory

  • Mokhtar, Youcef;Heireche, Houari;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.397-405
    • /
    • 2018
  • In this paper, a novel simple shear deformation theory for buckling analysis of single layer graphene sheet is formulated using the nonlocal differential constitutive relations of Eringen. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal elasticity theory is employed to investigate effects of small scale on buckling of the rectangular nano-plate. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The results are verified with the known results in the literature. The influences played by Effects of nonlocal parameter, length, thickness of the graphene sheets and shear deformation effect on the critical buckling load are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Parametric Characterization of Zinc Oxide Nanostructures Forming Three-Dimensional Hybrid Nanoarchitectures on Carbon Nanotube Constructs (산화아연 나노구조의 탄소나노튜브와의 혼성구조 형성 특성 연구)

  • Ok, Jong G.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2015
  • We study the structural and functional characteristics of zinc oxide (ZnO) nanostructures that are grown on carbon nanotube (CNT) constructs via step-wise chemical vapor deposition (CVD). First, we optimize the CVD process to directly grow ZnO nanostructures on CNTs by controlling the growth temperature below $600^{\circ}C$, where CNTs can be sustained in a ZnO-growing oxidative atmosphere. We then investigate how the morphology and areal density of ZnO nanostructures evolve depending on process parameters, such as pressure, temperature, and gas feeding composition, while focusing on the effect of underlying CNT topology on ZnO nucleation and growth. Because various types of ZnO nanostructures, including nanowires, nanorods, nanoplates, and polycrystalline nanocrystals, can be conformally formed on highly conductive CNT platforms, this electrically addressable three-dimensional hybrid nanoarchitecture may better meet a wide range of nanoelectronic application-specific needs.