• Title/Summary/Keyword: Nanoplate Au

Search Result 5, Processing Time 0.022 seconds

Effect of Nanostructures of Au Electrodes on the Electrochemical Detection of As

  • Kastro, Kanido Camerun;Seo, Min Ji;Jeong, Hwakyeung;Kim, Jongwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.206-213
    • /
    • 2019
  • The development of simple methods for As detection has received great attention because As is a toxic chemical element causing environmental and health-related issues. In this work, the effect of nanostructures of Au electrodes on their electroanalytical performance during As detection was investigated. Different Au nanostructures with various surface morphologies such as nanoplate Au, nanospike Au, and dendritic Au structures were prepared, and their electrochemical behaviors toward square-wave anodic stripping voltammetric As detection were examined. The difference in intrinsic efficiency for As detection between nanostructured and flat Au electrodes was explained based on the crystallographic orientations of Au surfaces, as examined by the underpotential deposition of Pb. The most efficient As detection performance was obtained with nanoplate Au electrodes, and the effects of the pre-deposition time and interference on As detection of the nanoplate Au electrodes were also investigated.

Controlled Assembly of Gold Nanoprism and Hexagonal Nanoplate Films for Surface Enhanced Raman Scattering

  • Lee, Doo-Ri;Hong, Soon-Chang;Park, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3575-3580
    • /
    • 2011
  • This paper reports a methodology for preparing close-packed two dimensional gold nanoprism films and hexagonal nanoplate films at a hexane/water interface. By controlling the concentration of linker molecules in the hexane layer and the temperature of the colloid solution, highly ordered close-packed nanoplate arrays can be fabricated. These films were investigated to compare their corresponding surface enhanced Raman scattering (SERS) efficiencies. It was demonstrated that the Au nanoprism films resulted in a stronger SERS enhancement than the Au hexagonal nanoplate films. The difference in the SERS enhancement is attributed to the film array difference, demonstrating that Au nanoprism films have a higher line contact density than their Au hexagonal analogues.

Effect of Electrochemical Oxidation-Reduction Cycles on Surface Structures and Electrocatalytic Oxygen Reduction Activity of Au Electrodes

  • Lim, Taejung;Kim, Jongwon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.310-316
    • /
    • 2016
  • Oxidation-reduction cycling (ORC) procedures are widely used for cleaning nanoparticle surfaces when investigating their electrocatalytic activities. In this work, the effect of ORC on the surface structures and electrocatalytic oxygen reduction activity of Au electrodes is analyzed. Different structural changes and variations in electrocatalysis are observed depending on the initial structure of the Au electrodes, such as flat bulk, nanoporous, nanoplate, or dendritic Au. In particular, dendritic Au structures lost their sharp-edge morphology during the ORC process, resulting in a significant decrease in its electrocatalytic oxygen reduction activity. The results shown in this paper provide an insight into the pretreatment of nanoparticle-based electrodes during investigation of their electrocatalytic activities.

Fabrication of Movable Nanostructures by Selective Etching of Nanoplates (나노판의 선택적 식각에 의한 이동이 가능한 나노구조체 제작)

  • Yun Yong-Ju;Ah Chil-Seong;Yun Wan-Soo;Ha Dong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.328-333
    • /
    • 2006
  • Movable nanometer-scale structures are fabricated by selective etching of single crystalline Au nanoplates. The nanostructures have arbitrary shapes like gear and alphabet 'A' with in-plane size less than 500 m and thickness of $25\sim60nm$. They could be moved successfully on the substrate using a nanornanipulator installed in a focused ion beam system. Our approach is expected to be useful in fabricating various kinds of nanocomponents which can play a role as building blocks for the sophisticated nanodevices or micromachines.