• Title/Summary/Keyword: Nanopatterned surface

Search Result 13, Processing Time 0.022 seconds

Nanopatterned Surface Effect on the Epitaxial growth of InGaN/GaN Multi-quantum Well Light Emitting Diode Structure

  • Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.40-43
    • /
    • 2009
  • The authors fabricated a nanopatterned surface on a GaN thin film deposited on a sapphire substrate and used that as an epitaxial wafer on which to grow an InGaN/GaN multi-quantum well structure with metal-organic chemical vapor deposition. The deposited GaN epitaxial surface has a two-dimensional photonic crystal structure with a hexagonal lattice of 230 nm. The grown structure on the nano-surface shows a Raman shift of the transverse optical phonon mode to $569.5\;cm^{-1}$, which implies a compressive stress of 0.5 GPa. However, the regrown thin film without the nano-surface shows a free standing mode of $567.6\;cm^{-1}$, implying no stress. The nanohole surface better preserves the strain energy for pseudo-morphic crystal growth than does a flat plane.

Graphene-matrix nanotopography as a biomimetic scaffold for engineering structure and function of stem cells

  • Park, Seon-Ho;Kim, Jang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.82-82
    • /
    • 2017
  • It is a great challenge to design and develop biologically inspired hierarchical platforms composed of nano and sub-nanopatterned topography for cell and tissue engineering. In this work, we have developed the novel platforms as a synthetic extracellular matrix using graphene and nanopatterned substrates for promoting functions of cells. Monolayer graphene was coated on the nanopatterned matrix with various nanoscale parallel ridges and grooves as scaffolds with hierarchical structures. Strictly, it was found that graphene-matrix nanotopography platforms could promote the functions of cells including stem cells, osteoblast cells, and endothelial cells through the synergically controlled cell-substrate and cell-cell interactions. Our results proposed that the graphene-based nanopatterned scaffolds would allow us to set up an efficient strategy for designing advanced biomimetic engineering systems toward stem cell-based tissue regeneration.

  • PDF

Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM

  • Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Yilmaz Guvercin;Sevval Ozturk;Murat Yaylaci
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.567-577
    • /
    • 2023
  • The killing of bacteria by mechanical forces on nanopatterned surfaces has been defined as a mechano-bactericidal effect. Inspired by nature, this method is a new-generation technology that does not cause toxic effects and antibiotic resistance. This study aimed to simulate the mechano-bactericidal effect of nanopatterned surfaces' geometric parameters and material properties against three implant-derived bacterial species. Here, in silico models were developed to explain the interactions between the bacterial cell and the nanopatterned surface. Numerical solutions were performed based on the finite element method. Elastic and creep deformation models of bacterial cells were created. Maximum deformation, maximum stress, maximum strain, as well as mortality of the cells were calculated. The results showed that increasing the peak sharpness and decreasing the width of the nanopatterns increased the maximum deformation, stress, and strain in the walls of the three bacterial cells. The increase in spacing between nanopatterns increased the maximum deformation, stress, and strain in E. coli and P. aeruginosa cell walls it decreased in S. aureus. The decrease in width with the increase in sharpness and spacing increased the mortality of E. coli and P. aeruginosa cells, the same values did not cause mortality in S. aureus cells. In addition, it was determined that using different materials for nanopatterns did not cause a significant change in stress, strain, and deformation. This study will accelerate and promote the production of more efficient mechano-bactericidal implant surfaces by modeling the geometric structures and material properties of nanopatterned surfaces together.

Single C-Reactive Protein Molecule Detection on a Gold-Nanopatterned Chip Based on Total Internal Reflection Fluorescence

  • Heo, Yunmi;Lee, Seungah;Lee, Sang-Won;Kang, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2725-2730
    • /
    • 2013
  • Single C-reactive protein (CRP) molecules, which are non-specific acute phase markers and products of the innate immune system, were quantitatively detected on a gold-nanopatterned biochip using evanescent field-enhanced fluorescence imaging. The $4{\times}5$ gold-nanopatterned biochip (spot diameter of 500 nm) was fabricated by electron beam nanolithography. Unlabeled CRP molecules in human serum were identified with single-molecule sandwich immunoassay by detecting secondary fluorescence generated by total internal reflection fluorescence (TIRF) microscopy. With decreased standard CRP concentrations, relative fluorescence intensities reduced in the range of 33.3 zM-800 pM. To enhance fluorescence intensities in TIRF images, the distance between biochip surface and CRP molecules was optimally adjusted by considering the quenching effect of gold and the evanescent field intensity. As a result, TIRF only detected one single-CRP molecule on the biochip the first time.

Influence of Wet Chemistry Damage on the Electrical and Structural Properties in the Wet Chemistry-Assisted Nanopatterned Ohmic Electrode (Wet chemistry damage가 Nanopatterned p-ohmic electrode의 전기적/구조적 특성에 미치는 영향)

  • Lee, Young-Min;Nam, Hyo-Duk;Jang, Ja-Soon;Kim, Sang-Mook;Baek, Jong-Hyub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.150-150
    • /
    • 2008
  • 본 연구에서는 Wet chemistry damage가 Nanopatterned p-ohmic electrode에 미치는 영향을 연구하였다. Nanopattern은 Metal clustering을 이용하여, P-GaN와 Ohmic형성에 유리한 Pd을 50$\AA$ 적층한 후 Rapid Thermal Annealing방법으로 $850^{\circ}C$, $N_2$분위기에서 3min열처리를 하여 Pd Clustering mask 를 제작하였다. Wet etching은 $85^{\circ}C$, $H_3PO_4$조건에서 시간에 따라 Sample을 Dipping하는 방법으로 시행하였다 Ohmic test를 위해서 Circular - Transmission line Model 방법을 이용하였으며, Atomic Force Microscopy과 Parameter Analyzer로 Nanopatterned GaN surface위에 형성된 Ni/ Au Contact에서의 전기적 분석과, 표면구조분석을 시행하였다. AFM결과 Wet처리시간에 따라서 Etching형상 및 Etch rate이 영향을 받는 것이 확인되었고, Ohmic test에서 Wet chemistry처리에 의한 Tunneling parameter와 Schottky Barrier Height가 크게 증/감함을 관찰하였다. 이러한 결과들은 Wet처리에 의해서 발생된 Defect가 GaN의 표면과 하부에서 발생되며, Deep acceptor trap 및 transfer거동과 밀접한 관련이 있음을 확인 할 수 있었다. 보다 자세한 Transport 및 Wet chemical처리영향에 관한 형성 Mechanism은 후에 I-V-T, I-V, C-V, AFM결과 들을 활용하여 발표할 예정이다.

  • PDF

Fabrication of Nanopatterned PDMS Elastic Stamp Mold Using Surface Treatment of Nanotemplate (나노템플레이트 표면처리를 통한 나노패턴이 형성된 PDMS 탄성 스탬프 몰드 제작)

  • Park, Yong Min;Seo, Sang Hyun;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Polydimethylsiloxane (PDMS) is a widely used material for replicating micro-structures because of its transparency, deformability, and easy fabrication. At the nanoscale, however, it is hard to fill a nanohole template with uncured PDMS. This paper introduces several simple methods by changing the surface energy of a nanohole template and PDMS elastomer for replicating 100nm-scale structures. In the case of template, pristine anodic aluminum oxide (AAO), hydrophobically treated AAO, and hydrophillically treated AAO are used. For the surface energy change of the PDMS elastomer, a hydrophilic additive and dilution solvent are added in the PDMS prepolymer. During the molding process, a simple casting method is used for all combinations of the treated template and modified PDMS. The nanostructured PDMS surface was investigated with a scanning electron microscope after the molding process for verification.

Synthesis and Fragmentation of Furoxanaldehydes in the Gas Phase for Nanopatterned Alkyne Formation on a Solid Surface

  • Kim, Gi-Young;Kim, Ju-Cheon;Lee, Seung-Hee;Kim, Hyung-Jin;Hwang, Kwang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.459-463
    • /
    • 2009
  • Furoxanaldehydes possessing phenyl or alkenyl groups at the 3- or 4-position of the furoxan ring were designed for alkyne formation on a solid surface. Furoxans 2 and 3 were prepared from the corresponding alkenes 2a and 3a by the reaction with NaN$O_2$ in acetic acid. Furoxan 4, in which the furoxan ring is conjugated with a double bond, was prepared from bis(bromomethyl)benzene 4a in 5 steps using the Wittig reaction of aldehyde 1 as the key step. The electron beam-mediated fragmentation of furoxanaldehydes 1-4 in a mass spectrometer was exploited by focusing on alkyne formation on the solid surface. The fragmentation of furoxan 3 possessing diaryl groups afforded diarylacetylene at high efficiency, suggesting that the aryl group conjugated with the furoxan ring could facilitate alkyne formation with the evolution of NO.

Synthesis and E-Beam-Mediated Gas Phase Fragmentation of Thiol-Containing Furoxans for Nanopatterned Alkyne Formation on Gold Surface

  • Koo, Hyun-Seo;Park, Kyung-Moon;Hwang, Kwang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3583-3587
    • /
    • 2010
  • Furoxanthiols PFT and BPFT possessing thiomethyl or thiobenzyl groups in the furoxan ring were designed and synthesized as potential light-sensitive alkyne precursors on a gold surface. The synthesis of thiofuroxans PFT and BPFT was performed from the corresponding halofuroxans 1b and 2c, respectively, by the substitution with potassium thioacetate in ethyl acetate/ethanol or DMF, followed by basic hydrolysis as the key reactions. Electron-beammediated fragmentation of furoxans 1c and 2d in a mass spectrometer afforded the corresponding aryl alkyne fragments, with the evolution of NO in high preference. In the cases of thiofuroxans PFT and BPFT, carbon-sulfur bond cleavage was observed as a representative fragmentation, producing M-SH and M-SAc peaks, which competed with the release of NO. In the fragmentation of mono-aryl furoxan 1c, the release of molecule of NO was predominately observed to produce an M-NO fragment as a base peak by the formation of trimembered thiiranium or azirine intermediate.

Fabrication of shape-controlled Au nanoparticle arrays for SERS substrates

  • Shin, Seon Mi;Choi, Kyeong Woo;Ye, Seong Ji;Kim, Young Yun;Park, O Ok
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.139-149
    • /
    • 2014
  • Surface enhanced Raman Scattering (SERS) has attracted attention because the technique enables detection of various chemicals, even down to single molecular scale. Among the diverse candidates for SERS substrates, Au nanoparticles are considered promising due to their fine optical properties, chemical stability and ease of surface modification. Therefore, the fabrication and optical characterization of gold particles on solid supports is highly desirable. Such structures have potential as SERS substrates because the localized surface plasmon resonance of gold nanoparticles is very sensitive to combined molecules and environments. In addition, it is well-known that the properties of Au nanoparticles are strongly dependent on their shape. In this work, arrays of shape-controlled Au nanoparticles were fabricated to exploit their enhanced and reproducible optical properties. First, shape-controlled Au nanoparticles were prepared via seed mediated solution-phase synthesis, including spheres, octahedra, and rhombic dodecahedra. Then, these shape-controlled Au nanoparticles were arranged on a PDMS substrate, which was nanopatterned using soft lithography of poly styrene particles. The Au nanoparticles were selectively located in a pattern of hexagonal spheres. In addition, the shape-controlled Au nanoparticles were arranged in various sizes of PDMS nanopatterns, which can be easily controlled by manipulating the size of polystyrene particles. Finally, the optical properties of the fabricated Au nanoparticle arrays were characterized by measuring surface enhanced Raman spectra with 4-nitrobenezenethiol.