• 제목/요약/키워드: Nanopatterned roll mold

검색결과 2건 처리시간 0.015초

다양한 양극산화 공정조건에 따른 롤 금형 표면에 형성되는 나노포어 형상에 대한 연구 (Investigation of Nanopore Shape Formed on an Aluminum Roll Mold with Various Anodizing Conditions)

  • 류인곤;한의돈;김병희;서영호
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.166-171
    • /
    • 2017
  • This study analyzes the effect of anodizing conditions on nanopore formation on a cylindrical aluminum roll. In general, a nanopore is formed at the center of a concave base-pattern. Occasionally, multiple nanopores are formed on a single base-pattern. However, to control the diameter and interpore distance precisely, single nanopores are required. In this study, the ratio of the number of single nanopores to the total number of nanopores was investigated by varying anodizing conditions such as electrode area, electrolyte concentration, and rotation speed of the roll mold. The areal ratio of the counter-electrode to the working electrode (aluminum), electrolyte concentration, and the roll-mold rotation speed were varied from 0.4% to 42%, 0.07 M to 0.3 M, and 5 rpm to 75 rpm, respectively. The experimental results showed that the single-nanopore ratio increased with increasing counter-electrode area and electrolyte concentration. However, the rotation speed had no significant effect on nanopore shape.

데스크탑 규모의 간결한 롤투롤 나노임프린팅 기반 나노패턴 연속가공 시스템 개발 (Development of a Compact Desktop-sized Roll-to-roll Nanoimprinting System for Continuous Nanopatterning)

  • 이정수;이지훈;남승범;조성일;조용수;고민석;이승조;오동교;김정대;이재혁;옥종걸
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.96-101
    • /
    • 2017
  • We have developed a compact desktop-sized nanopatterning system driven by the Roll-to-Roll (R2R) nanoimprinting (NIL) principle. The system realizes the continuous and high-speed stamping of various nanoscale patterns on a large-area flexible substrate without resorting to ponderous and complicated instruments. We first lay out the process principle based on continuous NIL on a UV-curable resin layer using a flexible nanopatterned mold. We then create conceptual and specific designs for the system by focusing on two key processes, imprinting and UV curing, which are performed in a continuous R2R fashion. We build a system with essential components and optimized modules for imprinting, UV curing, and R2R conveying to enable simple but effective nanopatterning within the desktop volume. Finally, we demonstrate several nanopatterning results such as nanolines and nanodots, which are obtained by operating the built desktop R2R NIL system on transparent and flexible substrates. Our system may be further utilized in the scalable fabrication of diverse flexible nanopatterns for many functional applications in optics, photonics, sensors, and energy harvesters.