• Title/Summary/Keyword: Nanoparticle drug delivery system

Search Result 35, Processing Time 0.03 seconds

Research on Thymopentin Loaded Oral N-Trimethyl Chitosan Nanoparticles

  • Yuan, Xiao-Jia;Zhang, Zhi-Rong;Song, Qing-Guo;He, Qin
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.795-799
    • /
    • 2006
  • Peptides, although high efficacy and specificity in their physiological function, usually have low therapeutical activities due to their poor bioavailability when administrated orally. Nanoparticles have been regarded as a useful vector for targeted drug delivery system because they can protect drug from being degraded quickly and pass the gastrointestinal barriers. Here we described a novel oral N-trimethyl chitosan nanoparticles formulation containing thymopentin (Tp5-TMC-NP). N-trimethyl chitosan (TMC) was synthesized and then used to prepare Tp5-TMC-NP by ionotropic gelation. A three-factor, five-level CCD (Central Composite Design) design was used in the optimization procedure, with HPLC as the analyzing method. The resulting Tp5-TMC-NP had a regular spherical surface and a narrow particle size range with a mean diameter of 110.6 nm. The average entrapment efficiency was 78.8%. The lyophilized Tp5-TMC-NP formulation was stable in $4^{\circ}C\;or\;-20^{\circ}C$ after storage of 3 months without obvious changes in morphology, particle size, pH and entrapment ratio. The results of the flow cytometer determination showed that the ratio of $CD4^+/CD8^+$ of Wistar female rat given Tp5-TMC-NP (ig) was 2.59 time that of the group given Tp5 (ig).

Preparation of Eudragit coated solid lipid nanoparticles (SLN) for hydrophilic drug delivery

  • Han, Sung-Chul;Yoon, Hee-Sun;Lee, Ki-Young;Kim, Yeon-Zu;Kim, Dong-Woon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.655-659
    • /
    • 2003
  • Solid lipid nanoparticle (SLN) system has been attracted increasing attention during last few years as a potential drug delivery carrier However, the SLN have disadvantage of low encapsulation efficiency for hydrophilic drug. In this study, for increase it's encapsulation efficiency, we prepared the $Eudragit^{\circledR}$ L100-55 (eudragit) coated SLN(E-SLN) based on solvent evaporation method and melt dispersion technique, and analyzed their physicochemical properties in terms of particle size, morphology, and encapsulation efficiency. As a result, they have a ${\pm}150$ nm particle size, spherical shape, and $10^{\sim}25$ % loading efficiency. SLN consists of coconut oil as core material, ascorbic acid and okyong-san as hydrophilic drug.

  • PDF

Preparation and Characterization of a Propofol-loaded Polymeric Micellar System: Nanoparticular Stability

  • Cho, Jae-Pyoung;Cho, Jin-Cheol;Oh, Eui-Chaul
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.393-398
    • /
    • 2008
  • A propofol delivery system was prepared using two biocompatible polymeric surfactants, poloxamer 407 and PEG 400. The nanoparticular stability of the micellar system was evaluated in terms of temperature change, storage time and composition. The particle size of the system was slightly increased with elevating temperature from $4^{\circ}C$ to $25^{\circ}C$, but its distribution was unimodal. At $40^{\circ}C$, the system presented a bimodal particle size distribution and the increase in the fraction of particles larger than 15 nm. This result might be due to the expansion of the nanoparticles through micellar swelling at the high temperature. It was found that propofol was gradually come out of the system, stored for a month at three different temperatures (4, 25 and $40^{\circ}C$). The drug loss was apparently dependent on temperature and the system composition. Increasing temperature induced the acceleration of the drug loss of $7{\sim}10%$ at $4^{\circ}C$ and $14{\sim}16 %$ at $40^{\circ}C$. This may be owing to the high diffusivity resulting from the swelling of the hydrophilic surface of the nanoparticle at high temperature. However, the addition of PEG 400 to the system led to the reduction of the drug loss. This result is associated with the previous investigation that PEG coverage decreased diffusion coefficient because of the formation of the denser structure on the surface of nanoparticulate. Nevertheless, the limited amount of PEG, less than 2% (w/v), should be used to prevent the precipitation and discoloration of the system.

Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review (별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발)

  • Shin, Hyo Jung;Lee, Ka Young;Kwon, Kisang;Kwon, O-Yu;Kim, Dong Woon
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.849-855
    • /
    • 2021
  • Recently, as nanotechnology has been introduced and used in various fields, the development of new drugs has been accelerating. Nanoparticles have maintained blood drug concentration for extended periods of time with a single administration of the drug. The drug can then be selectively released only at the pathological site, thereby reducing side effects to other non-pathological sites. In addition, nanoparticles can be modified for selective target sites delivery for other specific diseases, with polymers being widely used in the manufacture of these nanoparticles. Poly (D,L-lactic-co-glycolic acid ) (PLGA) is one of the most extensively developed biodegradable polymers. PLGA is widely used in drug delivery for a variety of applications. It has also been approved by the FDA as a drug delivery system and is widely applied in controlled release formulations, such as in gene therapy treatments. PLGA nanoparticles have been developed as delivery systems with high efficiency to specific cell types by using passive and active targeting methods. After the development of a drug delivery system using PLGA nanoparticles, the drug is selectively delivered to the target site, and the effective blood concentration for extended periods of time is optimized according to the disease. In this review paper, we focus on ways to improve cell-specific treatment outcomes by examining the development of astrocyte selective nanoparticles based on PLGA nanomaterials for gene therapy.

New Low Temperature Sol-gel Synthesis of Germanium Nanoparticles and Their Optical Characteristics (게르마늄 나노입자의 새로운 저온 졸-겔 합성방법의 개발과 광학적 특성)

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.3
    • /
    • pp.157-161
    • /
    • 2010
  • New low temperature synthesis of germanium nanoparticles obtained from the reaction of germanium tetrachloride and sodium/benzophenonewere developed. These germanium nanoparticles terminated with chloride group were oxidized in air to give hydroxy-terminated germanium nanoparticles. Germanium nanoparticle containing 20(S)-camptothecin (CPT) for a noble drug delivery system were developed. FT-IR spectroscopy was used for the characterization of vibrational absorption for the germanium nanoparticle and oxidized germanium nanoparticles containing camptothecin. Electronic absorption and fluorescence properties were measured with UV-Vis and fluorescence spectrometer. The morphology of oxidized germanium nanoparticles containing camptothecin was investigated by using TEM.

Application of Various Hydrophobic Moiety-modified Chitosan Nanoparticle as a Drug Delivery Carrier (다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰)

  • Jeong, Gyeong-Won;Nah, Jae-Woon;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.404-409
    • /
    • 2017
  • Natural polymer chitosan has been widely applied to medical fields due to its biochemical activities such as anticancer, antibacterial and lowering cholesterol in addition to biocompatibility and biodegradability. Currently, researches are being actively conducted to develop various drug-encapsulated chitosan nanoparticles for curing different diseases by applying chitosan to a drug delivery system. The free amine ($-NH_2$) group present in chitosan can bind to various hydrophobic groups by physical and chemical modification and the chitosan with hydrophobic groups can form shell-core nanoparticles by self-assembly when dispersed in water. In addition, an insoluble drug can increase the solubility against water when it was encapsulated in the core of chitosan nanoparticles. Also, the therapy effect can be maximized by minimizing side effects of drugs such as proteins, anticancer drugs and vaccines when they were encapsulated in the core of chitosan nanoparticles. Moreover, it is possible to control the particle size and release rate according to the hydrophobic group introduced to chitosan, so that it can be applied to a wide range of medical fields. The purpose of this review is to discuss the preparation and property of chitosan nanoparticles modified with various hydrophobic groups, and the application to drug delivery systems according to their property.

Preparation of Nanoparticles in Drug Delivery System Using Guar Derivatives and Dialysis Method

  • Na, Kun;Kim, Yu-Eun;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.50-55
    • /
    • 1999
  • To develop a new form of controlled release dosage for administering for indomethacin (IND), two formulations of IND-loaded nanoparticles were designed based on polysaccharide (guar) derivatives. Nanoparticles prepared by the dialysis method were characterized with respect to morphology, size distribution, drug content, and in vitro drug release. Morphological studies by scanning electron microscopy (SEM) indicated that guar acetate (GA) nanoparticles were spherical in shape and had a smooth surface. The particle size distributions of formulation I (40mg of GA) and formulation II (80mg of GA) were shown to be $250.78\pm185.13nm$ and $718\pm145.90nm$ in distilled water ($20$^{\circ}C$), respectively. The drug loading efficiencies of nanoparticles were approximately 26% and 31% for formulations I and II, respectively. The differential scanning calorimetry (DSC) results indicated that the IND was perfectly distributed within GA nanoparticles. We also found, from the X-ray diffractometry analysis, that a decrease in the degree of crystallinity of the drug occurred in the nanoparticles. No changes between the original IND and the released IND from GA nanoparticles were detected by FT-IR. Using guar acetate, it is possible to design nanoparticles which allow the controlled release of IND over an extended period of time.

  • PDF

The Biostability and Cancer Effect of PLGA Nanoparticles with Different Charges (전하가 다른 PLGA 나노 입자의 생체 안정성 및 암세포에 미치는 영향)

  • Kim, Inwoo;Park, Seungbin;Ji, Yuhyun;Park, Sanghyo;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.140-145
    • /
    • 2018
  • Cancer is a major burden of human disease worldwide. Current chemotherapy has severe side effects because the drugs affect whole body nonspecifically. In addition, the drugs to reach cancer cells are very limited. Over the last two decades, Drug Delivery System (DDS) using nanoparticles has suggested promising results to improve current limitations. In this study, we prepared PLGA nanoparticles with different charge properties and observed their stability and internalization effect to cancer cells. Results using Dynamic Light Scattering (DLS) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the size and chemical composition of the nanoparticles. The stability of the nanoparticles in pH buffers were variable depending on charge properties. The nanoparticles showed different cytotoxicity and internalization effects to MCF-7 human breast cancer cells. In conclusion, we demonstrated the importance of delicately engineered nanoparticles for better DDS in cancer.

Preparation and Drug Release of All-Trans Retinoic Acid-Loaded Poly(L-lactic acid) Nanoparticles (레티노산 함유 폴리락탄산 나노입자의 제조 및 약물 방출)

  • Chae, Ji-Man;Lee, Kyung-Man;Kim, In-Sook;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.401-406
    • /
    • 2004
  • To develop an intravenous delivery system of all-trans retinoic acid (ATRA) for the cancer therapy, poly(L-lactic acid) nanoparticles were prepared and characterized. Emulsification-solvent evaporation method was chosen to prepare submicron sized nanoparticles. Spherical nanoparticles less than 200 nm in diameter with narrow size distribution were prepared, and the entrapment efficiency of drug was more than 95%. The endothermic peak at $183^{\circ}C$ and X-ray crystallographic peak of ATRA appeared in the nanoparticle system, suggesting the inhibition of crystallization of ATRA by polymer adsorption during the precipitation process. ATRA was released at $37^{\circ}C$ for 60 days and the release rate was dependent on the concentration of drug incorporated in the nanoparticles. While ATRA was unstable in the light, it was very stable at $4^{\circ}C$. These results suggest the usefulness of PLA nanoparticles as a sustained and prolonged release carrier for ATRA.

Enhanced Internalization of Macromolecular Drugs into Mycobacterium smegmatis with the Assistance of Silver Nanoparticles

  • Sun, Fangfang;Oh, Sangjin;Kim, Jeonghyo;Kato, Tatsuya;Kim, Hwa-Jung;Lee, Jaebeom;Park, Enoch Y.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1483-1490
    • /
    • 2017
  • In this study, silver nanoparticles (AgNPs) were synthesized by the citrate reduction process and, with the assistance of n-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, were successfully loaded with the macromolecular drug vancomycin (VAM) to form AgNP-VAM bioconjugates. The synthesized AgNPs, VAM, and AgNP-VAM conjugate were characterized by UV-visible spectroscopy, zeta potential analysis, confocal microscopy, and transmission electron microscopy. The effect of loading VAM onto AgNPs was investigated by testing the internalization of the bioconjugate into Mycobacterium smegmatis. After treatment with the AgNP-VAM conjugate, the bacterial cells showed a significant decrease in UV absorption, indicating that loading of the VAM on AgNPs had vastly improved the drug's internalization compared with that of AgNPs. All the experimental assessments showed that, compared with free AgNPs and VAM, enhanced internalization had been successfully achieved with the AgNP-VAM conjugate, thus leading to significantly better delivery of the macromolecular drug into the M. smegmatis cell. The current research provides a new potential drug delivery system for the treatment of mycobacterial infections.