• 제목/요약/키워드: Nanoparticle deposition

검색결과 101건 처리시간 0.033초

나노유체 이용한 풀비등 임계열유속 증가에서 나노입자 유착물의 영향에 관한 실험적 연구 (Experimental study on the role of nanoparticle deposition in pool boiling CHF enhancement using nanofluids)

  • 김형대;김선태;안호선;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1906-1911
    • /
    • 2007
  • It has been well known that pool boiling CHF in nanofluids compared to pure water significantly increase due to the deposition of nanoparticles on heater surface. This study concerns the characteristics of the nanoparticle deposition layer and its influence on CHF. Pool boiling experiments were carried out with 0.01vol.% water-$TiO_2$ nanofluids to obtain various nanoparticle-deposited heaters. CHF on the prepared heaters was measured during pool boiling in pure water. The heater surfaces were visualized using scanning electron microscope (SEM) and also characterized using contact angle and capillarity. The results showed that the CHF enhancement in nanofluids was completely dependent upon the structural and physicochemical characteristics of the nanoparticle deposition layer.

  • PDF

마이크로입자의 레이저 Ablation으로 형성된 나노입자의 수펴소닉 적층법을 이용한 퍼멀로이 나노구조박막 적층에 관한 연구 (A Study on the Deposition of Permalloy Nanostructured Thin Film Utilizing Supersonic Deposition of Nanoparticles Formed by Laser Ablation of Microparticles)

  • 윤의중;정명희
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.478-483
    • /
    • 2005
  • In this paper, we synthesized 10 to 20 nm diameter NiFe nanoparticles and nanoparticle films utilizing supersonic jet deposition of nanoparticle aerosols generated by laser ablation of $30\;to\;45{\mu}m$ diameter permalloy $(Ni_{81}Fe_{19} \;at\;{\%})$ microparticles. The component and composition of the nanoparticles were characterized by an energy dispersive X-ray spectroscopy. The morphology of the nanoparticles and nanoparticle films was analyzed by a high-resolution transmission electron microscopy and a scanning electron microscopy, respectively. The experimental results showed that the nanoparticles and nanoparticle films have remarkable properties with an excellent preservation of the composition of feedstock permalloy microparticles. The purpose of the present work is to present details on the composition and nanostructural characterizations for NiFe nanoparticles and nanoparticle films prepared by laser ablation of microparticles (LAM).

나노유체의 풀비등 임계열유속에 대한 실험적 연구 (Experimental Investigations on Pool Boiling CHE of Nano-Fluids)

  • 김형대;김무환
    • 대한기계학회논문집B
    • /
    • 제31권11호
    • /
    • pp.949-956
    • /
    • 2007
  • Pool boiling critical heat flux (CHF) of nanofluids with oxide nanoparticles of $TiO_2$ or $Al_2O_3$ was experimentally investigated under atmospheric pressure. The results showed that a dispersion of oxide nanoparticles significantly enhances the CHF over that of pure water. Moreover it was found that nanoparticles were seriously deposited on the heater surface during pool boiling of nanofluids. CHF of pure water on a nanoparticle-deposited surface, which is produced during the boiling of nanofluids, was not less than that of nanofluids. The result reveals that the CHF enhancement of nanofluids is absolutely attributed to modification of the heater surface by the nanoparticle deposition. Then, the nanoparticle-deposited surface was characterized with parameters closely related to pool boiling CHF, such as surface roughness, contact angle, and capillary wicking. Finally, reason of the CHF enhancement of nanofluids is discussed based on the changes of the parameters.

광 증폭용 플라즈모닉 나노구조 제작을 위한 은 나노입자 증착 연구 (A Study on the Silver Nanoparticle Deposition for Optical Amplification)

  • 강지숙;김준현;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제25권1호
    • /
    • pp.11-15
    • /
    • 2018
  • 본 논문에서는 UV 나노임프린트 공정으로 제작한 나노 콘 형태의 구조물 위에 은 나노 입자를 증착하여 광증폭용 구조 형태를 제작하고자 하였다. 은 나노 입자의 증착은 하부 기판 표면의 젖음 특성에 따른 액적의 증발 거동을 이용하였으며, 기판 하부 열에너지의 차이에 따라서 액적 중심부부터 가장자리까지 증착 형태가 변화함을 확인하였다. 제작한 구조 형태와 유사한 구조를 시간영역 유한차분(FDTD)법을 통해 광 특성을 예측하여, 최종적으로 제작한 구조의 은나노 입자 부근에 에너지가 집중되는 결과를 확인하였다.

Palladium Layers on an Au(111) Nanoparticle and Their Catalytic Activity to Formic Acid Oxidation

  • 김병권;서대하;송현준;곽주현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.206-206
    • /
    • 2011
  • Nanoparticles have been received great attention from many researchers for several decades because of their good and unique properties. In particular, researches in the field of synthesis of bimetallic nanoparticles showed good results for the past ten years. In this research, Pd thinlayer on Au nanoparticles were synthesized by electrochemical deposition method. Well-defined Au(111) nanoparticles were synthesized by solution based reduction method. Electrochemical deposition conditions for Pd thinlayer on Au(111) nanoparticles surface were carefully regulated by controlling parameters of cyclic voltammetry. To calculate exact mass and surface area catalytic activities of deposited Pd thinlayer on Au(111) nanoparticle, electrochemically active surface area (ECSA) and mass of the deposited Pd thinlayer were measured by cyclic voltammetry in 0.1 M HClO4 solution. Afterward, catalytic activities of the deposited Pd thinlayer were measured in 0.1 M HClO4 + 0.2 M formic acid solution. In case of less negative deposition potential, the amounts of deposited Pd mass and surface area were small. However, mass and ECSA activity of the deposited Pd to oxidize formic acid were increased.

  • PDF

Nanoparticle Deposition for Pinning Centers

  • Lee, Sang-Moo;Yoo, Ja-Eun;Jung, Ye-Hyun;Lee, Jae-Young;Youm, Do-Jun
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2007년도 High Temperature Superconductivity Vol.XVII
    • /
    • pp.38-38
    • /
    • 2007
  • PDF

평판형 히터를 이용한 알루미늄과 타이타늄 산화물 나노유체의 풀비등 임계열유속에 관한 실험적 연구 (Experimental Investigation on the Pool Boiling Critical Heat Flux of Water-Based Alumina and Titania Nanofluids on a Flat Plate Heater)

  • 안호선;김형대;조항진;강순호;김무환
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.729-736
    • /
    • 2009
  • Pool boiling heat transfer and critical heat flux (CHF) of water-based nanofluids with alumina and titania nanoparticles of 0.01% by volume were investigated on a disk heater at saturated and atmospheric conditions. The experimental results showed that the boiling in nanofluids caused the considerable increase in CHF on the flat surface heater. It was revealed by visualization of the heater surface subsequent to the boiling experiments that a major amount of nanoparticles deposited on the surface during the boiling process. Pool boiling of pure water on the surface modified by such nanoparticle deposition resulted in the same CHF increases as what boiling nanofluids, thus suggesting the CHF enhancement in nanofluids was an effect of the surface modification through the nanoparticle deposition during nanofluid boiling. Possible reasons for CHF enhancement in pool boiling of nanofluids are discussed with surface property changes caused by the nanoparticle deposition.

펄스레이저증착법에 의한 GaN 나노입자의 합성 및 특성분석 (Synthesis and characterization of GaN nanoparticles by pulsed laser deposition)

  • 노정현;심승환;윤종원;;박용주;심광보
    • 한국결정성장학회지
    • /
    • 제13권2호
    • /
    • pp.79-82
    • /
    • 2003
  • ArF(193nm) 엑시머 레이저를 이용한 펄스레이저증착법(PLD)에 의해 GaN 소결체를 타겟 재료로 하여 $SiO_2$기판위에 GaN nanoparticles를 합성하였다. PLD 공정 중에는 100Pa, 50Pa, 10Pa및 1 Pa의 Ar gas 압력과 100mJ 및 200mJ의 레이저 에너지를 가하였다. 합성된 GaN nanoparticles는 XRD, SEM, TEM, XPS 및 optical absorption spectra 등에 의해 분석되었다. 합성된 GaN nanoparticles는 대체적으로 20~30nm의 입경을 갖는 균일한 분포를 하고 있었다. 또한, Ar 기체 압력이 낮아짐에 따라 합성된 GaN nanoparticles의 stoichiometry가 향상되고 optical band edge가 blueshift 경향을 나타내었다.

Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO2 Substrate on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang Hoon;Kim, Sun Mi;Ha, Heonphil;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.261-261
    • /
    • 2013
  • The smart design of nanocatalysts can improve the catalytic activity of transition metals on reducible oxide supports, such as titania, via strong metal-support interactions. In this work, we investigatedtwo-dimensional Pt nanoparticle/titania catalytic systems under the CO oxidation reaction. Arc plasma deposition (APD) and metal impregnation techniques were employed to achieve Pt nanoparticle deposition on titania supports, which were prepared by multitarget sputtering and sol-gel techniques. APD Pt nanoparticles with an average size of 2.7 nm were deposited on sputtered and sol-gel-prepared titania films to assess the role of the titania support on the catalytic activity of Pt under CO oxidation. In order to study the nature of the dispersed metallic phase and its effect on the activity of the catalytic CO oxidation reaction, Pt nanoparticles were deposited in varying surface coverages on sputtered titania films using arc plasma deposition. Our results show an enhanced activity of Pt nanoparticles when the nanoparticle/titania interfaces are exposed. APD Pt shows superior catalytic activity under CO oxidation, as compared to impregnated Pt nanoparticles, due to the catalytically active nature of the mild surface oxidation and the active Pt metal, suggesting that APD can be used for large-scale synthesis of active metal nanocatalysts.

  • PDF