• Title/Summary/Keyword: Nanoparticle Soluble

Search Result 29, Processing Time 0.049 seconds

Improving the Skin Penetration of Cosmetics Containing Omega 3 Fatty Acids

  • KIM, Han-Sook;HAN, Sien-Ho
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.4
    • /
    • pp.15-25
    • /
    • 2021
  • Purpose: The purpose of this study is to form a new cosmetic market through the development of a composition with high skin permeability after adding omega 3 to Aloe Vera soothing gel products. Research design, data and methodology: In this study, omega-3 fatty acids were added to cosmetic products in the form of soothing gels. By applying nanoparticle technology to rapidly increase the penetration of raw materials into the skin, characteristics related to skin moisture and regeneration were determined. Omega-3 was used as a raw cosmetic material. Then 5% and 15% nanoparticle aqueous products containing omega-3 were prepared. The developed water hydrate was subjected to skin permeability test using artificial skin. Results: 53 hours of artificial transdermal penetration of the developed composition, the ethanol-based omega-3 containing nanoparticle solubilized raw material was about three times higher penetration than the ethanol-based omega-3 containing nanoparticle solubilized raw material. Conclusions: The raw material product (SR-1901) containing 5% of omega-3 nanoparticle water hydrate has skin regeneration ability and pain reduction effect. It can be expected that the skin cosmetics market will be reorganized into a new distribution structure and opportunity through omega-3 supplemented soothing gel cosmetics with improved efficacy than existing cosmetics.

Characterization and Preparation of Low Molecular Weight Water Soluble Chitosan Nanoparticle Modified with Cell Targeting Ligand for Efficient Gene Delivery (효과적인 유전자전달을 위한 표적성 리간드가 도입된 저분자량 수용성 키토산 나노입자의 제조 및 특성)

  • Heo, Sun-Heang;Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.454-459
    • /
    • 2007
  • Gene therapy using low molecular weight water soluble chitosan (LMWSC) as polycationic polymer shows good biocompatibility, but low transfection efficiency. The mechanism of folic acid (FA) uptake in the cells to promote targeting and internalization could improve transfection rates. The objective of this study was to synthesize and characterize the WSCFA-DNA complex and evaluate their cytotoxicity, in vitro. In $^1H-NMR$ spectra, specific peaks appeared both of FA and LMWSC in $D_2O$. WSCFA nanoparticles have spherical shapes with particle size show below 110 nm. In the cell cytotoxicity test, the WSCFA-DNA complex showed high cell viability, in vitro. Gel electrophoresis showed condensed DNA within the carriers. hi vitro transfection efficiency was assayed by fluorescence spectroscopy WSCFA nanoparticles have less cytotoxicity, good DNA condensation and particle size around 110 nm, which makes them a promising candidate as a non-viral gene vector.

A New Approach to Synthesis and Photoluminescence of Silicon Nanoparticles

  • Kim, Beomsuk
    • Journal of the Chosun Natural Science
    • /
    • v.2 no.1
    • /
    • pp.28-31
    • /
    • 2009
  • We describe the synthesis and characterization of silicon nanoparticles prepared by the soluton reduction of SiCl4. These reactions produce Si nanoparticles with surfaces that are covalently terminated. The resultant organic derivatized Si nanoparticles as well as a probable distribution of Water-soluble Si nanoparticles are observed and characterized by photoluminescence(PL) spectroscopy. This work focuses originally on the organic- and water-soluble silicon nanoparticles in terms of the photoluminescence. Further this work displays probably the first layout of hydrogen terminated Si nanoparticles synthesized in solution at room temperature.

  • PDF

Parenteral Formulations Based on Albumin Particulate Technology

  • Lee, Hong-Hwa;Lee, Min-Jung;Heo, Sun-Ju;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.83-95
    • /
    • 2010
  • Over the years, nanoparticle drug delivery systems have demonstrated versatile potentials in biological, medical and pharmaceutical applications. In the pharmaceutical industry nanotechnology research has mainly focused on providing controlled drug release, targeting their delivery to specific organs, and developing parenteral formulations for poorly water soluble drugs to improve their bioavailability. Achievement in polymer industry has generated numerous polymers applicable to designing nanoparticles. From viewpoints of product development, a nanocarrier material should meet requirements for biodegradability, biocompatibility, availability, and regulatory approval crieteria. Albumin is indeed a material that fulfills such requirements. Also, the commercialization of a first albumin-bound paclitaxel nanoparticle product (Abraxane$^{TM}$) has sparked renewed interests in the application of albumin in the development of nanoparticle formulations. This paper reviews the intrinsic properties of albumin, its suitability as a nanocarrier material, and albumin-based parenteral formulation approaches. Particularly discussed in detail are albumin-based particulate injectables such as Abraxane$^{TM}$. Information on key roles of albumin in the nab$^{TM}$ technology and representative manufacturing processes of albumin particulate products are provided. It is likely that albumin-based particulate technology would extend its applications in delivering drugs, polypeptides, proteins, vaccines, nucleic acids, and genes.

Direct route to high yield synthesis of metal nanoparticles for printable electronic devices

  • Kim, Dong-Hun;Lee, Gwi-Jong;Lee, Yeong-Il;Jeon, Byeong-Ho;Choe, Jun-Rak;Seo, Yeong-Gwan;Kim, Tae-Hun;Gang, Seong-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.14.1-14.1
    • /
    • 2009
  • We found a high yield synthetic route to organic-soluble metal nanoparticles in the concentrated organic phase. The organic phase contains metal salt, amines, fatty acids, nonpolar solvent, and reducing agent. Even using only generic chemicals, organic-soluble silver and copper nanoparticles could be easily obtained by this simple and rapid reaction scheme at large scale. The hydrocarbon-protected metal nanoparticles showed excellent dispersion properties and were successfully printed onto polymer substrates. The printed pattern was heated at $200^{\circ}C$, which showed very low specific electrical resistance (< 10 uOhm$\cdot$cm), sufficient for conducting line of various printable devices.

  • PDF

Preparation and Characterization of Cisplatin-Incorporated Chitosan Hydrogels, Microparticles, and Nanoparticles

  • Cha, Ju-Eun;Lee, Won-Bum;Park, Chong-Rae;Cho, Yong-Woo;Ahn, Cheol-Hee;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.573-578
    • /
    • 2006
  • Three different, polymer-platinum conjugates (hydrogels, microparticles, and nanoparticles) were synthesized by complexation of cis-dichlorodiammineplatinum(II) (cisplatin) with partially succinylated glycol chitbsan (PSGC). Succinic anhydride was used as a linker to introduce cisplatin to glycol chitosan (GC). Succinylation of GC was investigated systematically as a function of the molar ratio of succinic anhydride to glucosamine, the methanol content in the reaction media, and the reaction temperature. By controlling the reaction conditions, water-soluble, partially water-soluble, and hydrogel-forming PSGCs were synthesized, and then conjugated with cisplatin. The complexation of cisplatin with water-soluble PSGC via a ligand exchange reaction of platinum from chloride to the carboxylates induced the formation of nano-sized aggregates in aqueous media. The hydrodynamic diameters of PSGC/cisplatin complex nano-aggregates, as determined by light scattering, were 180-300 nm and the critical aggregation concentrations (CACs), as determined by a fluorescence technique using pyrene as a probe, were $20-30{\mu}g/mL$. The conjugation of cisplatin with partially water-soluble PSGC, i.e., borderline between water-soluble and water-insoluble PSGC, produced micro-sized particles $<500{\mu}m$. Cisplatin-complexed PSGC hydrogels were prepared from water-insoluble PSGCs. All of the cisplatin-incorporated, polymer matrices released platinum in a sustained manner without any significant initial burst, suggesting that they may all be useful as slow release systems for cisplatin. The release rate of platinum increased with the morphology changes from hydrogel through microparticle to nanoparticle systems.