• Title/Summary/Keyword: Nanoparticle Dispersion

Search Result 94, Processing Time 0.025 seconds

Silica/polymer Nanocomposite Containing High Silica Nanoparticle Content : Change in Proton Conduction and Water Swelling with Surface Property of Silica Nanoparticles (고농도의 Silica Nanoparticle을 함유한 Silica/polymer 나노복합체 : 실리카 표면 특성에 따른 수소이온 전도성 및 수팽윤도 변화)

  • Kim, Ju-Young;Kim, Seung-Jin;Na, Jae-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.514-521
    • /
    • 2010
  • A new one-shot process was employed to fabricate proton exchange membranes (PEMs) over conventional solvent-casting process. Here, PEMs containing nano-dispersed silica nanoparticles were fabricated using one-shot process similar to the bulk-molding compounds (BMC). Different components such as reactive dispersant, urethane acrylate nonionmer (UAN), styrene, styrene sulfuric acid and silica nano particles were dissolved in a single solvent dimethyl sulfoxide (DMSO) followed by copolymerization within a mold in the presence of radical initiator. We have successfully studied the water-swelling and proton conductivity of obtained nanocomposite membranes which are strongly depended on the surface property of dispersed silica nano particles. In case of dispersion of hydrophilic silica nanoparticles, the nanocomposite membranes exhibited an increase in water-swelling and a decrease in methanol permeability with almost unchanged proton conductivity compared to neat polymeric membrane. The reverse observations were achieved for hydrophobic silica nanoparticles. Hence, hydrophilic and hydrophobic silica nanoparticles were effectively dispersed in hydrophilic and hydrophobic medium respectively. Hydrophobic silica nanoparticles dispersed in hydrophobic domains of PEMs largely suppressed swelling of hydrophilic domains by absorbing water without interrupting proton conduction occurred in hydrophilic membrane. Consequently, proton conductivity and water-swelling could be freely controlled by simply dispersing silica nanopartilces within the membrane.

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Development of Chitosan Coated Solid Lipid Nano-particles Containing 7-Dehydrocholesterol (7-디하이드로콜레스테롤을 함유한 키토산 코팅 처리 Solid Lipid Nano-particle의 개발에 관한 연구)

  • Lee Geun-Soo;Kim Tae-Hoon;Lee Chun-Il;Pyo Hyeong-Bae;Choe Tae-Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.141-146
    • /
    • 2005
  • Unstable cosmetic active ingredients could rapidly break down in chemical and photochemical process. Therefore, it has become a very important issue to encapsulate active ingredient for the stabilization. 7-Dehydrocholesterol (7-DHC), a precursor of vitamin $D_3$, has been shown to increase levels of protein and mRNA for heat shock protein in normal human epidermal keratinocytes. However, topical dermal application of 7-DHC is restricted due to its poor solubility and chemical unstability. In this study, 7-DHC was incorporated into nano-emulsion (NE), solid lipid nano-particle (SLN), and chitosan coated solid lipid nano-particle (CASLN), respectively. In order to prepare NE and SLN dispersion, high-pressure homogenization at temperature above the melting point of lipid was used Hydrogenated lecithin and polysorbate 60 were used as stabilizer for NE and SLN. CASLN was prepared by high speed homogenizing after adding chitosan solution to the SLN dispersion and showed positively charged particle properties. Decomposition rate of 7-DHC in NE, SLN and CASLN was studied as a function of time at different temperature. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were performed to characterize state of lipid modification. It appeared that CASLN is the most effective to stabilize 7-DHC and may be used for a useful topical dermal delivery system.

Preparation of blocking ultraviolet mica composites using Nano-TiO2 (Nano-TiO2를 이용한 자외선차단 마이카 복합체 제조)

  • Yun, Ki Hoon;Lee, Jaebok;Moon, Young-Jin;Go, Hee Kyoung;Lee, Yi;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1197-1205
    • /
    • 2018
  • UV protection cosmetics belong to functional cosmetics and contain organic or inorganic UV blocking pigments. The inorganic UV blocking pigments are mainly zinc oxide and titanium dioxide. It is known that inorganic UV blocking pigment has a diameter of 60 to 100 nm and has good blocking ability of UVA and UVB. Also, it has high inactivity against sunlight including UV and is excellent in safety. In addition, it is not absorbed or accumulated on the skin like organic pigments and does not cause skin irritation or allergy. In this study, mica, a plate-shaped inorganic pigment, nanosized titanium dioxide, an UV blocking material, and hydrophobic silica were surface-treated with surfactants. And then, titanium dioxide nanoparticles and silica were physically adsorbed on the mica by non-chemical mutual attraction due to differences in charge. Thereafter, the mica complex was surface-treated with silane to prepare a hydrophobic UV blocking pigment complex. The plate-shaped UV blocking composite improves the cohesiveness of a general nanoparticle material titanium dioxide, enhances UV blocking effect due to uniform dispersion, and can greatly improve dispersion stability in cosmetic formulations by surface treatment with hydrophobic property. The surface charge of the pigment was evaluated by zeta potential. The properties of the UV blocking pigment complex were evaluated by FE-SEM, XRD, FT-IR and UV-VIS.

High reliability nano-reinforced solder for electronic packaging (전자 패키징용 고신뢰성 나노입자 강화솔더)

  • Jung, Do-hyun;Baek, Bum-gyu;Yim, Song-hee;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • In the soldering industry, a variety of lead-free solders have been developed as a part of restricting lead in electronic packaging. Sn-Ag-Cu (SAC) lead-free solder is regarded as one of the most superior candidates, owing to its low melting point and high solderability as well as the mechanical property. On the other hand, the mechanical property of SAC solder is directly influenced by intermetallic compounds (IMCs) in the solder joint. Although IMCs in SAC solder play an important role in bonding solder joints and impart strength to the surrounding solder matrix, a large amount of IMCs may cause poor strength, due to their brittle nature. In other words, the mechanical properties of SAC solder are of some concern because of the formation of large and brittle IMCs. As the IMCs grow, they may cause poor device performance, resulting in the failure of the electronic device. Therefore, new solder technologies which can control the IMC growth are necessary to address these issues satisfactorily. There are an advanced nanotechnology for microstructural refinement that lead to improve mechanical properties of solder alloys with nanoparticle additions, which are defined as nano-reinforced solders. These nano-reinforced solders increase the mechanical strength of the solder due to the dispersion hardening as well as solderability of the solder. This paper introduces the nano-reinforced solders, including its principles, types, and various properties.

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • Jeong, Seon-Ho;Lee, Byeong-Seok;Lee, Ji-Yun;Seo, Yeong-Hui;Kim, Ye-Na;More, Priyesh V.;Lee, Jae-Su;Jo, Ye-Jin;Choe, Yeong-Min;Ryu, Byeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

Hydrophilic Graphite Nanoparticles Synthesized by Liquid Phase Pulsed Laser Ablation and Their Carbon-composite Sensor Application (액상 펄스 레이저 어블레이션에 의한 친수성 그라파이트 나노입자의 제조 및 센서 응용)

  • Choi, Moonyoul;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.236-241
    • /
    • 2012
  • It is widely recognized that it is hard to prepare hydrophilic graphite nanoparticles because of their high crystallinity and inert characteristics. In this study, we successfully synthesized the hydrophilic graphite nanoparticles by using liquid phase pulsed laser ablation method which has been actively employed for the thin film deposition up to now. The obtained hydrophilic graphite showed an ultra-high dispersion stability in water, because the hydrophilic functional groups like carboxyl and carbonyl group was simultaneously introduced onto the graphite surface with the nanoparticle formation, as confirmed by FT-IR and zeta potential measurements. Finally, a markedly enhanced gas sensing ability for acetone was shown in comparison with the conventional carbon black for the carbon polymer composite sensor with polyethyleneglycol (PEG).

Synthesis of Cu Nanoparticles through a High-Speed Chemical Reaction between Cuprous Oxide and Sulfuric Acid and Enhancement of Dispersion by 3-Roll Milling (아산화동과 황산간의 고속 화학반응에 의한 미세 Cu 입자의 합성과 삼본밀에 의한 분산성 개선)

  • Chee, Sang-Joo;Lee, Jong-Hyun;Hyun, Chang-Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.125-133
    • /
    • 2016
  • With the aim of using a filler material in a conductive paste, fine Cu nanoparticles were synthesized through the high-speed chemical reaction between cuprous oxide ($Cu_2O$) powder and sulfuric acid in distilled water. Under external temperature of $7^{\circ}C$, sulfuric acid concentration of 48%, and $Cu_2O$ amount of 30 g, the $Cu_2O$ particles were eliminated and slightly aggregated Cu nanoparticles were synthesized. Futhermore, Cu nanoparticles of 224 nm, in which the aggregation between particles was obviousiy much suppressed, were synthesized with the choice of an additive. In the particle sample, occasionally there are coarse particles formed by the aggregation of fine nanoparticles and weak linkages between the nanoparticles. However, the coarse particles were destroyed and the linkages were broken after mixing with a resin formulation, indicating the behavior of untangling the aggregation between nanoparticles.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

Flame Retardancy and Mechanical Property of Polypropylene/ Nylon Nanocomposite Reinforced with Montmorillonite (몬모릴로나이트로 강화된 폴리프로필렌/ 나일론 나노복합재료의 난연특성 및 기계적 특성)

  • 이종훈;박호식;안인구;이윤희;김연수;이영관;남재도
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.576-582
    • /
    • 2003
  • When the halogenated flame retardant, decabromodiphenyl oxide, was added to the polypropylene/nylon blend, and was compounded with montmorillonite and compatibilizer, maleic anhydride polypropylene, the improvement of flame retardancy and mechanical properties was investigated. The degree of dispersion between polymer resin and inorganic nanoparticles was investigated, and the flame retardancy and mechanical properties was measured quantitatively. XRD results showed that the montrnorillonite was com-pletely exfoliated after polypropylen/nylon nanocomposites was mixed above twice. By compounding with montmorillonite, polypropylene/nylon blend system was overcome the deterioration of flame retardancy. The tensile strength and impact strength were slightly increased, and by compounding with montmorillonite, the additional increase in mechanical properties was obtained. Therefore, the flame retardancy of polypropylene / nylon blend was decreased by adding nylon, but by compounding with inorganic nanoparticle, improvement of the flame retardancy and mechanical properties was obtained.